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Introduction 

Immune cells are in continuous crosstalk with tumor cells and other cells in the tumor 
microenvironment. This crosstalk originates from direct physical contact between the 
immune cells and the cells in the tumor microenvironment or through their interactions 
with factors (proteins, lipids and other biomolecules as well as cellular fragments such as 
exosomes and microparticles) released from the tumors and associated tissues. This 
interaction causes changes in the molecular make-up of immune cells. In the project 
funded by the Department of Defense (DOD) we hypothesized that these alterations in 
the molecular phenotype of immune cells should be explored for disease-specific 
biomarkers. Although initially our focus was on identifying the biomarkers by proteomics 
analysis, the project evolved to a stage where using modern sequencing techniques 
allowed us to analyze the transcriptome of immune cells to identify biomarkers that can 
be further validated by proteomic analysis. 

Body. 

The study we completed was a proof-of-principle study to demonstrate that the 
circulating immune cells of ovarian cancer patients be considered as repositories of 
cancer-specific biomarkers. To the best of our knowledge, such studies have not been 
conducted in ovarian cancer patients. During the first year of this study, we focused our 
attention on performing proteomic analysis of immune cells to establish protocols to lyse 
the immune cells and to conduct mass spectrometry on the lysed samples. We were 
successful in completing this work and were able to characterize the proteome of human 
natural killer cells. Our initial experiments were designed to demonstrate that the 
protocols we had established indeed were useful in identifying differences in immune cell 
proteome when the immune cells were subjected to stimulation. We used a minimalist 
approach and conducted proteomic analysis of NK cells isolated from the blood of three 
healthy donors. The NK cells were stimulated in vitro with IL-2. Using high resolution 
mass spectrometry, we were able to show several significant changes in the proteome of 
NK cells that were stimulated with IL-2 as compared to naïve unstimulated freshly 
isolated NK cells.  

These initial experiments not only allowed us to develop the protocols for proteomic 
analysis but also provided support to our hypothesis that soluble factors such as cytokines 
can indeed cause significant alterations in the proteomes of immune cells. While it is 
predictable that IL-2 would cause changes in NK cells via its signaling through the IL-2 
receptor pathway, we found evidence of proteomic changes in pathways and genes that 
are not normally found to be associated or affected by IL-2 receptor stimulation (abstracts 
and paper published on this topic is included in Appendix 1-4, respectively).  

Based on these results we predict that under similar situation when the immune cells are 
under the influence of cytokines and other modulating factors originating from ovarian 
cancer cells or from the ovarian tumor microenvironment, major proteomic changes in 
the immune cells should be expected. The challenge now is to exploit the knowledge and 
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conclusions from this proof-of-concept study to identify biomarkers that can be used for 
screening as well as monitoring of ovarian cancer.  

We will revert to this point and discuss other advances we have made in identifying 
immune cell-based biomarkers of ovarian cancer in a subsequent paragraph. But first we 
will also discuss how the data we collected on the proteomic analysis of IL-2 stimulated 
NK cells will be helping us with understanding mechanism of an immunotherapeutic 
agent that can target human ovarian tumors.  

In a separate project we are investigating huKS-IL2, an immunocytokine (antibody-IL2 
chimera) that targets Epithelial Cell Adhesion Molecule (EpCAM) that is overexpressed 
by ovarian and other tumors. huKS-IL2 recruits NK and other innate immune cells and 
facilitates cytolysis of ovarian cancer cells. In recent work we showed that the IL-2 
molecules of huKS-IL2 engage the IL-2 receptor on NK cells and facilitate the formation 
of an immunological synapse- a step that is essential for the NK cells to lyse tumor 
targets. The immunocytokines are engineered to have two molecules of IL-2 per 
molecule of antibody. Thus, each molecule of huKS-IL2 has two IL-2 molecules. Based 
on our preliminary data, it is clear that the two IL-2 molecules crosslink IL-2 receptors on 
NK cells. With the immunocytokines we have a situation where the innate immune cells 
are stimulated not only via the IL-2 receptors but also through engagement of Fc 
receptors that are engaged by the antibody portion of huKS-IL2.  

The protocols we have developed for proteomic analysis of NK cells will be used in our 
studies with huKS-IL2 to determine changes in proteome of the immune cells as a result 
of activation of two separate receptor systems- the IL-2 and the Fc receptors. These 
studies will provide important data on the molecular mechanisms of huKS-IL2 and other 
similar immunocytokines.  

Now we will revert back to our further studies on identifying ovarian cancer-specific 
biomarkers in circulating immune cells. While the proteomic analysis provided useful 
information, we realized that the procedures required for this analysis are generally 
complex and require significant numbers of immune cells. We therefore considered the 
possibility of gaining biomarker information by conducting a transcriptomic analysis of 
immune cells. Such analysis will provide us with direct evidence of genes that are 
differentially regulated in immune cells from cancer patients. We reasoned that once the 
differentially expressed genes are identified in the immune cells, proteomic (ELISA, flow 
cytometry, etc.) could be used to validate the results at the protein level and to develop 
screening or diagnostic tests for ovarian cancer.  

With this intention, we conducted a study where RNA samples were obtained from 
immune cells isolated from five healthy women and five ovarian cancer patients with 
stage III or IV ovarian cancer. This approach was very successful as it resulted in 
identification of several hundred genes that were differentially expressed in the two 
cohorts. From this data we have identified a panel of five genes that were most 
differentially expressed. We are currently continuing our work validating these molecular 
signatures in immune cells isolated from age matched healthy donors, patients with 
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benign gynecologic disease and advanced ovarian cancer patients (twenty subjects in 
each group). 

With the microarray analysis showing positive results, we further explored if the use of 
modern RNA sequencing techniques can be used to further enhance the chances of 
identifying cancer-specific biomarkers in the immune cell transcriptome. RNAseq is a 
powerful technique for high-throughput sequencing of nucleic acids and has significant 
advantages over conventional microarray experiments. The information obtained from 
RNAseq analysis not only provides a quantitative assessment of gene expression but also 
provides information about potential mutations, expression of splicing variants and 
expression of microRNAs.  

Considering the benefits, we performed RNAseq analysis of RNA samples isolated from 
three healthy donors and three patients with advanced stage ovarian cancer. The sequence 
data obtained through these experiments is enormous and we are mining this data to 
identify transcriptome signatures unique to the immune cells from ovarian cancer 
patients. Our initial bioinformatics analysis conducted in collaboration with Dr. Jesus 
Gonzalez-Bosquet has led us to identify approximately 1300 unique genes that are 
differentially expressed in cancer patient’s immune cells. Experiments are continuing to 
validate specific genes from the RNAseq experiments in the healthy, benign gynecologic 
and cancer patients referenced above. We are also comparing the microarray dataset with 
the dataset from the RNAseq experiments to validate the data.  

In continuing experiments we are using a mouse model to further demonstrate the power 
of using the immune cell transcriptome as repository for cancer-specific biomarkers. 
Mouse ovarian tumors are implanted in C57/BL6 mice and immune cells are being drawn 
at regular intervals from these animals. Transcriptomes of the immune cells will be 
characterized by RNAseq and changes corresponding different stages of tumor growth 
will be determined. This experimental model will further support our overall concept and 
also provide us with an experimental paradigm to conduct advanced well-controlled 
experiments.  

Finally, we would also wish to report that our hypothesis of finding biomarkers in 
immune cells can also be extended to other diseases. For example, we have reported our 
work on proteomic changes in immune cells derived from women with norml 
pregnancies and those with preeclampsia. Conceptual understanding for this work came 
from the project funded by the DOD and we were able to use some of the control samples 
for this preeclampsia study that we had already obtained for the studies proposed in our 
DOD proposal. A paper on this data on immune cells from preeclampsia patients is 
published and is attached as Appendix 5.  

Key Accomplishments: 

1. Proteomic profiling of human NK cells and identification of novel signaling
pathways and molecules that are triggered in these immune cells following
activation by IL-2.
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2. Identification of a panel of potential biomarkers by the microarray analysis of the
transcriptome of immune cells from ovarian cancer patients and healthy donors.

3. Completion of the RNAseq analysis of the transcriptome of immune cells from
ovarian cancer patients and healthy donors.

4. Identification of several gene signatures through RNAseq and generation of a
large database from this data that can be queried and mined for future studies.

5. Validation experiments are underway on immune cells from healthy donors,
ovarian cancer patients and women with benign gynecologic pathology.

6. The success of our proof-of-concept studies has also allowed us to test if
biomarker signatures in immune cells isolated from patients benign pathologies.
We have conducted RNAseq analysis on RNA samples isolated from circulating
immune cells from normal pregnancies and those with preeclampsia. Thus the
funding provided to us through this DOD grant mechanism will not only advance
research in ovarian cancer but also other cancers and benign conditions.

Reportable outcomes: 

1. Publication of a manuscript in the proteomic analysis of NK cells in the Journal of
Proteomics.

2. A R01 proposal is currently under construction and is planned to be submitted to
NIH by the February 5, 2014 deadline.

3. We obtained additional funding from the Department of Obstetrics and
Gynecology and the University of Wisconsin-Madison Paul P. Carbone Cancer
center to support this project.

4. Drs. Shitanshu Uppal and Erin Medlin are fellows in the PI’s division who are
undergoing training to become Gynecologic Oncologists. As part of their
fellowship requirements, Drs. Uppal and Medlin conducted one year of laboratory
research. During his research year, Dr. Uppal conducted the transcriptome
analysis using the microarrays. Dr. Medlin is currently working under the PI’s
mentorship to identify changes in immune cell transcriptome in response to
ovarian tumors in the mouse model. Thus the funding from DOD has allowed us
to train two future gynecologic oncologists.

5. Two graduate students were funded on this project. One student (Dr. Di Ma)
received her PhD partly based on the proteomic analysis of NK cells (Appendix
1-4)

Conclusions. 

The proteomic, transcriptome analysis collectively provide strong evidence supporting the 
presence of biomarkers for ovarian cancer in circulating immune cells. Our ongoing 
studies will be focused on consolidating and verifying these initial promising results with 
the intent of developing novel diagnostic assays for ovarian cancer.  
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Spectrometry 

Characterization and Comparative Analysis of 
Proteomic Profiles of Leukemic and Primary 
Human NK Cells 
Di Ma1, Arvinder Kapur2, Mildred Felder2, Manish S Patankar2 and Lingjun Li1 

1School of Pharmacy, University of Wisconsin-Madison, 777 Highland Ave., Madison, WI 53705
2Department of Obstetrics and Gynecology, University of Wisconsin-Madison, 600 Highland Ave, Madison, 
WI 53792 

INTRODUCTION 
As part of the innate immune system, natural killer (NK) cells detect and lyse tumor and 
virus infected cells. NK leukemia cell line NKL was initially established from patients 
with NK cell lymphoma. The morphology of NKL cells resembles that of primary NK 
cells, and they are used as “model cell lines” in NK cell research. NKL cells and primary 
NK cells, however, differ substantially in the expression of cell surface receptors and 
intracellular signal transduction proteins. To obtain useful knowledge on the functional 
relevance of these two cell types, we characterize and compared the proteome of NKL 
cells and primary NK cells isolated from healthy donors by mass spectrometry-based 
quantitative proteomics.  

METHODS 
NKL cells and primary NK cells were harvested and subjected to subcellular 
fractionation by differential centrifugation followed by protein extraction. The protein 
concentration was determined by BCA assay. The detergent in protein sample was 
removed by acetone precipitation and the proteins were redissolved in 8M urea. To 
reduce sample complexity, multidimensional liquid chromatography was employed prior 
to MS analysis. The tryptic digests of NKL cell lysates were separated in the first 
dimension off-line using high-pH RPLC and fractions were collected and subjected to the 
second dimension nanoflow RPLC on-lined coupled to MS/MS analysis. The resulting 
spectra were searched against Mascot for protein identification. The comparative analysis 
of NKL cell proteome and primary NK cell proteome is conducted via spectral counting. 

PRELIMINARY DATA 
Two most commonly used cell lysis buffers, RIPA buffer and NP-40 buffer were used for 
protein extraction in NKL cells and the efficiency of each buffer was compared based on 
protein concentration measured by BCA assay.  It was shown that RIPA buffer gives a 
much higher protein yield (8.1µg/µl) compared to NP-40 buffer (3.01µg/µl). To remove 
the detergent in protein sample, acetone precipitation was conducted. However, it was 



difficult to redissolve the protein pellet after acetone precipitation. To solublize proteins, 
either 8M urea or ProteaseMAX™ surfactant was added to assist trypsin digestion, and 
protein identification results showed that the two methods were comparable in improving 
protein solubility and enhancing in-solution tryptic digestion. To reduce the sample 
complexity, we employed 2D RP-RPLC prior to tandem MS experiments. To optimize 
the condition in first dimension high-pH RPLC, different sample loading amount (20µg 
vs. 50µg) and different fraction collection intervals (3min vs. 2min) were compared. It 
was determined that injecting 50µg of protein digests onto first dimension high-pH RPLC 
resulted in 25% increase in the number of protein identifications. A comparison of 2 
minute versus 3 minute fraction collection interval revealed that 2 minute/fraction was 
more favorable for downstream LC-MS/MS and the number of proteins identified was 
increased by 30%. Using the optimized condition for protein extraction and sample 
separation, a total of 1054 proteins were identified from four replicates of NKL cell 
lysates, and the sensitivity of our method was demonstrated by the detection of a low 
abundance protein HLA-DR alpha chain which is only expressed in NKL cells but not in 
primary NK cells. This and other differences in the proteomes highlight the potential 
variations in the cytotoxic and cytokine producing functions of the primary NK and the 
leukemic NKL cells. The proteome of primary NK cells isolated from healthy donors will 
be investigated using the same protocol, and the comparative analysis of NKL cell 
proteome and primary NK cell proteome will be performed via label-free spectral 
counting methodology. 

NOVEL ASPECT 
The combined use of subcellular fractionation and 2D RP-RPLC to reduce sample 
complexity prior to MS analysis of immune cell proteomes allows us to exhaustively 
study the alterations in the NK cell proteome in response to tumor antigens, and chemo 
and immunotherapeutic regimens. 



Introduction 

Results 

1School of Pharmacy, University of Wisconsin-Madison, 777 Highland Ave., Madison, WI 53705  
2Department of Chemistry, University of Wisconsin-Madison, 777 Highland Ave., Madison, WI 53705  
3Department of Obstetrics and Gynecology, University of Wisconsin-Madison, 600 Highland Ave, Madison, WI 53792 

Natural Killer (NK) cells efficiently cytolyse tumors and virally infected cells.  The 
development and functional activity of NK cells are regulated by many cytokines, 
including IL-2 which stimulates the proliferation of NK cells and increases NK cells 
activity.  Although how IL-2 mediates its effects has been investigated, little is known 
about the alterations in the global NK cell proteome following IL-2 activation.  With the 
development of NK cell-based immunotherapies relying on activation via IL-2, it is 
important to conduct an exhaustive proteomic analysis of the NK cell to delineate 
molecular pathways that may impinge or accentuate the immune responses.  We 
therefore characterized the proteome of naïve and IL-2 activated primary NK cells by 
mass spectrometry-based quantitative proteomics.   

Purpose: 
 To develop a mass spectrometry workflow for protein characterization and
     quantitative analysis of primary NK cells . 
 To compare the proteome of naïve and IL-2 stimulated human NK cells.
 Methods:  
 Protein was extracted with RIPA  buffer with brief sonication.
 Prior to MS analysis, 2D RP-RPLC was employed to reduce sample complexity .
 Quantitative proteomic analyses of naïve and IL-2 activated NK cells were

performed by spectral counting.
Results: 
    Proteomic profile of naïve and IL-2 activated human NK cells were investigated  
    and compared . Quantitative analysis revealed a list of more than 400 proteins  
    with more than 2-fold up or down-regulation upon IL-2 stimulation. 

Workflow 

Conclusions and Future Directions 

Di Ma1, Weifeng Cao2, Arvinder Kapur3, Cameron O Scarlett1 Manish S Patankar3 and Lingjun Li1, 2 

Overview 

In summary, we have developed a method for the proteomic analysis in human primary 
NK cells.  We successfully employed 2D LC to reduce the sample complexity prior to MS 
analysis. To improve protein identification, Mascot percolator was employed and 2311 and 
2413 proteins could be identified from naïve or IL-2-activated NK cells respectively. 
Quantitative analysis revealed a list of more than 400 proteins that are up or down-
regulated in IL-2 signaling, which will be further examined and validated in future work. 

 Multidimensional Liquid Chromatography (MDLC) 

Methods 

Acknowledgements 
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Naïve NK cells IL-2 stimulated NK 
cells (16 hours) 

Cell lysis and protein 
extraction 

Cell lysis and protein 
extraction 

Acetone precipitation 
and trypsin digestion 

Acetone precipitation 
and trypsin digestion 

High pH RPLC High pH RPLC 

Nano-LC MS/MS Nano-LC MS/MS 

Protein identification Protein identification 

Protein quantification 

Data validation 

Sample Preparation 

Sample Separation 

LC-MS/MS 
amaZon ion trap mass spectrometer equipped with Waters nanoAcquity.  
NanoLC separation: Waters 1.7μm BEH130 100μm x 100mm analytical column. 

Tryptic digests 

High RPLC pH=10 

20 Fractions 

Phenomenex Gemini 
C18,150 x 2.1mm,3µm 

Validation of Protein Quantification method 
Mascot percolator was applied to  
facilitate and validate protein  
identification. To test if the  
application of percolator would  
affect the accuracy of protein  
quantification. The protein  
quantification method was  
validated by spiking 4µg, 1µg,  
0.25 µg, 62.5ng, 15.625ng,  
3.91ng of BSA and cytochrome c  
into 10µg digests from cell lysates  
of leukemic natural killer cells.  
The dynamic range of protein  
standards is 3 orders of magnitude.  
dNSAF was calculated as previously 
described by Zhang et al. [1].  
 

The scheme of employing high RPLC for orthogonal separation prior to MS analysis. 

Instrumentation 

First dimension: high pH RPLC (pH=10) 

Figure 2. Summary of protein identification and quantification. (A) Number 
of proteins identified from all 3 donors. (B) Number of up or down-regulated 
proteins in response to IL-2 in different donors.    

Figure 1. Linear regression between dNSAF values and known protein amounts. Log2-
transformed of dNSAF values were plotted as a function of log2-transformed proteins 
amounts in micrograms. 

Protein Identification and Quantification 

1999 

 Primary NK Cell Isolation 
Primary NK cell were isolated from 
healthy donors using RosetteSep® 
Human NK Cell Enrichment Cocktail. 

 Proteins were extracted from naïve
or IL-2 treated primary NK cells
using RIPA lysis buffer.

 Protein samples were cleaned by
acetone precipitation.

 Proteins were digested by trypsin.

Tryptic digests were separated by high pH 
reversed phase liquid chromatography 
offline prior to nanoLC-MS/MS analysis. 

Figure 3. PANTHER pathway analysis. The functions of 384 differentially expressed 
proteins in all three donors were searched in PANTHER database. PANTHER 
pathway analysis revealed 89 pathways from a total of 254 protein hits. 

Protein identifications were performed by Mascot database searching.  The 
embedded Mascot percolator was utilized to improve sensitivity of identifications.  
Each biological replicate has three technical replicates, and proteins detected in at 
least two technical replicates were selected for protein identification. Proteins 
identified in all three biological replicates were selected for quantification by spectral 
counting. 

Comparative Analysis of the Global Proteome of Naïve and IL-2 Stimulated Human NK Cells 

Data Analysis 
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Natural killer (NK) cells efficiently cytolyse tumors and virally infected cells. Despite the
important role that interleukin (IL)-2 plays in stimulating the proliferation of NK cells and
increasing NK cell activity, little is known about the alterations in the global NK cell proteome
following IL-2 activation. To compare theproteomesofnaïve and IL-2-activated primaryNKcells
and identify key cellular pathways involved in IL-2 signaling, we isolated proteins from naïve
and IL-2-activatedNK cells fromhealthy donors, the proteinswere trypsinized and the resulting
peptides were analyzed by 2D LC ESI-MS/MS followed by label-free quantification. In total, more
than 2000 proteins were identified from naïve and IL-2-activated NK cells where 383 proteins
were found to be differentially expressed following IL-2 activation. Functional annotation of IL-2
regulated proteins revealed potential targets for future investigation of IL-2 signaling in human
primary NK cells. A pathway analysis was performed and revealed several pathways that were
not previously known to be involved in IL-2 response, including ubiquitin proteasome pathway,
integrin signaling pathway, platelet derived growth factor (PDGF) signaling pathway, epidermal
growth factor receptor (EGFR) signaling pathway andWnt signaling pathway.

Biological significance
The development and functional activity of natural killer (NK) cells is regulated by interleukin
(IL)-2 which stimulates the proliferation of NK cells and increases NK cell activity. With the
development of IL-2-based immunotherapeutic strategies that rely on the IL-2-mediated
activation of NK cells to target human cancers, it is important to understand the global
molecular events triggered by IL-2 in human NK cells. The differentially expressed proteins in
human primary NK cells following IL-2 activation identified in this study confirmed the
activation of JAK–STAT signaling pathway and cell proliferation by IL-2 as expected, but also
led to the discovery and identification of other factors that are potentially important in IL-2
signaling. These new factors warrant further investigation on their potential roles in
modulating NK cell biology. The results from this study suggest that the activation of NK
cells by IL-2 is a dynamic process throughwhich proteinswith various functions are regulated.
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Such findings will be important for the elucidation of molecular pathways involved in IL-2
signaling in NK cells and provide new targets for future studies in NK cell biology.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Natural killer (NK) cells are large granular lymphocytes gener-
ated in bone marrow that make up 5–15% of the peripheral
blood lymphocytes (PBLs) [1]. NK cellsmediate important innate
immune responses that protect against viral infections and
cancer. NK cells directly kill target cells by recruiting granzyme
and perforin containing secretory granules to the immunolog-
ical synapse with target cells and also release proinflammatory
cytokines such as interferon gamma (INF-γ) and tumor necrosis
factor (TNF). The immunologic activities of NK cells are
controlled by intracellular signal transduction mediated by
specific cytokines and a complex crosstalk between activating
and inhibitory receptors [2].

IL-2, one of the first cytokines discovered, is a 15.5 kDa
protein that stimulates the proliferation of T cells and NK cells
[3]. In NK cells, IL-2 also augments cytotoxic function [4,5]
(conventionally referred to as the Lymphokine-Activated Killer
(LAK) cell activity) and induces IFN-γ production. IL-2 mediates
its effects through interaction with a cell surface receptor
complex consisting of IL-2Rα (CD25) and IL-2Rβ (CD122) and
IL-2Rγc chain (CD132) [6]. Upon activation, IL-2Rβ and γc chain
phosphorylate two Janus tyrosine-kinases (JAKs), JAK1 and JAK3,
which are required for IL-2 signaling inT cells andNKcells [7–10].
Phosphorylation of JAK1 and JAK3 leads to recruitment and
activation of Signal Transducers andActivators (STATs), a family
of transcription factors that contribute to the diversity of
cytokine responses. Following activation, STAT1, STAT3, and
STAT5 translocate to the nucleus and activate target genes [11].
In addition to the JAK–STAT pathway, IL-2 also mediates signal
transduction via protein kinase C (PKC), mitogen-activated
protein kinase (MAPK)/extracellular signal-regulated protein
kinase (ERK) and NF-κB [12]. Rapid activation of MAPK kinase
(MKK)/ERK pathway by IL-2, for example, contributes to the
generation of LAK activity, IFN-γ expression, and increased
surface expression of CD26 and CD69 on NK cells [13].
Additionally, IL-2-mediated activation of NF-κB is responsible
for up-regulation of perforin [14]. Recent studies have also
shown that the non-apoptotic functions of caspases also
contribute to the IL-2 mediated proliferation of NK cells [15].

All of these studies suggest that IL-2 initiates amultifactorial
signaling response that collectively regulates the biological
activity of NK cells. In-depth studies that utilize appropriate
“omic” approaches will provide important strategies to identify
the globalmolecular events triggered by IL-2 in humanNK cells.
Given the increasing use of immunotherapeutic strategies that
rely on the IL-2-mediated activation of NK cells to target human
cancers the impact of cutting-edge approaches to fully charac-
terize IL-2 signaling could be especially relevant. Some IL-2
centered strategies have already been approved by the FDA for
the treatment of metastatic melanoma [16] and renal cell
carcinoma [17]. Intense research (basic, translational, and
clinical) is also underway on the use of IL-2 and IL-2-antibody
conjugates (immunocytokines) to boost the anti-cancer activi-
ties of NK [18–21]. Our initial studies on the characterization of
the global proteome of naïve and IL-2-stimulated human NK
cells reveal a large number of proteins exhibiting changes in
expression levels upon IL-2 stimulation. Previous studies have
conducted gel-based analysis of high abundance proteins from
the membrane and secretory lysosome of NK cells [22–26]. The
current study is the first to utilize a non-gel-based LC–MS/MS
shotgun approach to carefully study the IL-2-induced changes
in the global proteome of NK cells. More than two thousand
proteins were identified from cell lysates of NK cells,
representing the largest protein catalog reported to date.
Label-free quantification by spectral counting was used to
identify 383 NK cell proteins that were significantly up- or
down-regulated in response to IL-2 stimulation.
2. Experimental methods

2.1. Materials

Protein standards, bovine serum albumin (BSA), bovine
cytochrome c (bCYC) and equine myoglobin (eMYG) were
purchased from Sigma-Aldrich (St. Louis, MO). RIPA buffer
was purchased from Pierce (Rockford, IL). Urea and ammoni-
um bicarbonate were from Fisher Scientific (Fair Lawn, NJ,
USA). Ammonium formate and iodoacetamide (IAM) were
purchased from Sigma-Aldrich (St. Louis, MO). Dithiothreitol
(DTT) and sequencing grade modified trypsin was purchased
from Promega (Madison, WI). High quality LC–MS grade and
Optima grade solvents (ACN and water) were purchased from
Fisher Scientific (Fair Lawn, NJ, USA). Recombinant human
IL-2 was purchased from Peprotech (Rocky Hill, NJ).

2.2. Sample collection

Human primary NK cells were isolated from three healthy
donors. Informed consent was obtained from all three blood
donors recruited and the studywasapprovedby the Institutional
Review Board at the University of Wisconsin-Madison. NK cells
from the blood samples were isolated by negative selection. The
RosetteSep NK cell isolation kit (Stem Cell Technologies) was
used and NK cell purification was conducted according to the
manufacturer's protocol and the purity of the isolated NK cells
was determined by monitoring of CD3, CD16, CD56, and NKp46
expression via flow cytometry as described in our previous work
[27–29]. The purified NK cells from each donor were divided
equally into two groups. Each group was cultured in medium
supplemented with or without IL-2 for 16 h. Following IL-2 (300
U/ml) stimulation, the activation status of NK cells was
confirmed by monitoring elevation in CD69 expression (Fig. 1).
NK cells were washed three times with ice-cold PBS,
resuspended in 200 μL RIPA, sonicated for 20 s and incubated
on ice for 20 min. Cellular debris was removed by centrifugation
for 30 min at 16,100 ×g at 4 °C. Supernatants were collected and
protein concentrations were measured using a BCA protein
assaykit (Pierce).Acetone (chilled to−80 °C)wasaddedgradually



Fig. 1 – NK cell activation. NK cells isolated from the peripheral blood of healthy donors were stimulated for 16 h with IL-2.
Activation status of the NK cells was determined by monitoring increase in the CD69 levels on the surface of the NK cells using
flow cytometry. Data shown is for NK cells isolated from two different healthy donors. Control NK cells (dotted line) and IL-2
stimulated cells (solid line) were labeledwith FITC-conjugated anti-CD69 antibody. Shaded area depicts binding of non-specific
murine IgG antibody.
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(with intermittent vortexing) to the protein extract to a final
concentration of 80% (v/v). The solutionwas incubated at −20 °C
for 60 min and centrifuged at 16,100 ×g for 15 min. The
supernatant was decanted, and the pellet was carefully washed
twice using cold acetone to ensure efficient removal of deter-
gent. Residual acetone was evaporated at ambient temperature.

2.3. Proteolysis

All protein samples were denatured with 8 M urea in 25 mM
ammonium bicarbonate buffer, and reduced by incubating with
50 mMDTT at 37 °C for 1 h. The reduced proteinswere alkylated
for 1 h in darkness with 100 mM iodoacetamide. The alkylation
reactionwas quenched by addingDTT to a final concentration of
50 mM. The sampleswere diluted to a final concentration of 1 M
urea. Trypsinwas added to the sample at a 30:1 protein to trypsin
mass ratio. The sample was incubated at 37 °C overnight.

2.4. Off-line first dimension high pH RPLC

Tryptic digests (38 μg) from each sample were injected onto a
Waters Alliance HPLC (Waters Corp., Milford, MA) with a high
pH-stable RP column (Phenomenex Gemini C18, 150 mm ×
2.1 mm, 3 μm) at a flow rate of 150 μL/min. The peptides were
eluted with a gradient from 5 to 45% solvent B over 45 min
(solvent A: 100 mM ammonium formate, pH 10; solvent B:
acetonitrile (ACN)). Fractions were collected every 2 min. Twenty
fractionswere collected from the first dimensional RPLCat pH 10,
and then every two fractions with equal collection time interval
were pooled, one fromthe early eluted sectionand theother from
the later eluted section as previously described [30]. The ten
pooled fractions were dried by Speedvac and reconstituted in
30 μL of 0.1% formic acid. 5 μL of each fraction was subjected to
nanoLC–MS/MS.

2.5. LC–ESI ion trapmass spectrometry andMS/MS analysis

Ten pooled fractions collected from high pH RPLC were analyzed
using amaZon ETD ion trap mass spectrometer (Bruker Billerica,
MA) equipped with Waters nanoAcquity UPLC (Waters Corp.,
Milford, MA). For the chromatographic separation, solvent A
consisted of 0.1% formic acid in water and solvent B consisted of
0.1% formic acid in ACN. 5 μL of each sample was injected onto a
Waters Symmetry C18 5 μm 180 μm × 20 mm precolumn at a
flow rate of 5 μL/min for 5 min at 95%A/5%B, followedby peptide
separation performed on Waters BEH130 1.7 μm C18
100 μm × 100 mm analytical column using gradient from 0 to
45%solventBat 300 nL/minover 90 min.Acquisitionofprecursor
ions and MS/MS spectra was performed using the parameters as
indicated below: Smart parameter setting (SPS)was set to 700m/z
and compound stability and trap drive level were set at 100%. Dry
gas temperature, 125 °C; dry gas, 4.0 L/min; capillary voltage, −
1300 V; end plate offset, −500 V; MS/MS fragmentation ampli-
tude, 1.0 V; and Smart fragmentation set at 30–300%. Data were
generated in data-dependent mode with strict active exclusion
set after two spectra and released after 1 min. MS/MS spectra
were obtained via collision induced dissociation (CID) fragmen-
tation for the six most abundant MS ions. For MS generation the
ion charge control (ICC) target was set to 200,000; maximum
accumulation time, 50.00 ms; one spectrometric average; rolling
average, 2; acquisition range of 300–1500 m/z; and scan speed
(enhanced resolution) of 8100 m/z s−1. For MS/MS generation the
ICC target was set to 300,000; maximum accumulation time,
50.00 ms; two spectrometric averages; acquisition range of
100–2000 m/z; and scan speed (Ultrascan) of 32,000 m/z per
second.

2.6. Database search

MS/MSspectrawere converted intoMascotGeneric Format (.mgf)
files by DataAnalysis (Ver 4.0, Bruker Daltonics Billerica, MA).
Deviations in parameters from the default Protein Analysis in
DataAnalysis were as follows: intensity threshold, 1000; maxi-
mum number of compounds, 1E9; and retention time window
0.001 min. The resulting mgf files were then searched against a
home-built HumanSwissProt database (SwissProt_2011_12.fasta,
533,657 entries plus 3 standard proteins, BSA, bCYC and eMYG)
with Mascot 2.3.02. The searching parameters and criteria were
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set as the following: tryptic digestion, maximum 2 missed
cleavages, carbamidomethylation of cysteine as the fixed mod-
ification, oxidation of methionine as the variable modification,
peptide mass tolerance of 1.2 Da, fragment mass tolerance of
0.6 Da, 2+, 3+ and 4+ chosen for charge state. In this study a
simultaneous target-decoy search strategy (automatic decoy
search) was adopted to facilitate false discovery rate (FDR)
estimation. With simultaneous target-decoy search, a MS/MS
spectrum is simultaneously searched against a protein sequence
from the target database and its scramble version in decoy
database. Therefore, FDR can be calculated from decoy hits and
target hits.We appliedMascot Percolator to improve peptide and
protein identification.Mascot Percolator has beenwell developed
[31] and embedded into Mascot search engine. Mascot Percolator
is a well performingmachine learningmethod which constructs
a support vector machine by using Mascot search parameters
and results to re-rank peptide or protein identification. With
Mascot Percolator, some low quality MS/MS spectra were
re-searched to produce reliable peptide identification. We check
“Percolator” option on Mascot results and control the resulting
FDR at ~1%. Set “a bold red peptide required” for protein
assembly. Since there were three technical replicates for each
sample, only proteins identified in at least two out of three
replicates were considered.

2.7. Protein quantification

Given the biological variation and technical variation across
datasets, only a subset of identified proteins is qualified for
quantification. It is important to select the appropriate amount
of quantifiable proteins. Since we prepared three biological
samples and each sample has three replicates, we set the
following criteria to select quantifiable proteins: 1) a protein is
quantifiable if it can be detected in at least two of three technical
replicates; and 2) it can be detected in all three biological
replicates. An additional complication results from protein
sequence conservation. Thus in our analysis the spectral counts
observed in themass spectrometer included the tryptic peptides
shared between proteins. To address this limitationwe calculate
the distributive normalized spectral abundance factor (dNSAF)
for each quantifiable protein within a chromatographic run
using the following formula [32]:

dNSAFi ¼
dSAFi

XN

i¼1

dSAFi

ð1Þ

dSAFi ¼

μSpCi þ μSpCi

XM

m¼1

μSpCm

� sSpCi

Mi
ð2Þ

where dSAF is the distributive spectral abundance factor for a
given protein, μSpC is the spectral counts of unique peptides
associated with this protein while sSpC is the spectral counts of
shared peptides associated with this protein. M is the mono-
isotopic mass of protein. The definition of “unique” peptide is
the peptidewhose sequencematched only one proteinwhereas
“shared” peptide means the peptide whose sequence is shared
by multiple proteins. Another limitation of our approach is the
variability in peptide detection between runs. In some cases a
peptide may not be observed or identified in some runs
resulting in a zero count value for that peptide in a particular
run. The following method was used to impute spectral counts
with zero value. First, if a protein had only one zero spectral
count out of three technical replicates, we calculated the
average value of spectral counts of this protein in all three
replicates, and then replaced the zero spectral count with the
average value. Next, in the case of zero spectral counts in all
three replicates, we followed the method as previously de-
scribed [33] to determine a fraction value within [0,1] to replace
the zero spectral counts. An iterative process was used where
zero spectral counts were replaced by a fraction of a spectral
count between 0 and 1, and the normality of the resulting
ln(dNSAF) distribution was evaluated by the Shapiro–Wilk test.
It is advisable to use the smallest value in order not to change
the total sumsignificantly. An in-house programwritten in Java
was used to extract peptides from the database results obtained
from Mascot Percolator, select quantifiable proteins and then
calculate spectral counts and dNSAF values. R program is used
to evaluate the normality of ln(dNSAF) distribution by Shapiro–
Wilk test. p-Value > 0.05 indicates the distribution can be
considered as Gaussian distribution.

2.8. Sample preparation and protein quantification of
standard proteins

To validate our use of Mascot Percolator results in label-free
spectral counting quantitation and dNSAF normalization we
used an NKL cell lysate spiked with known amounts of
commercially available proteins from other species. For this
analysis NKL cell lysates were obtained from 10 million NKL
cells using the same method as described in the “Sample
collection” section. Both standard proteins and NKL cell lysates
were digested by trypsin using the same protocol as described
in the “Proteolysis” section. The amounts of tryptic digests of
each protein standard spiked into 10 μg tryptic digests of NKL
cell lysateswere 4 μg, 1 μg, 0.25 μg, 62.5 ng, 15.625 ng, 3.91 ng of
BSA, bCYC and eMYG, respectively. Each sample (300 ng) was
injected onto a Waters nanoAcquity UPLC (Waters Corp.,
Milford, MA) with an amaZon ion trap mass spectrometer
(Bruker Daltonics, Billerica, MA). Each sample was run in
triplicate. For the chromatographic separation, solvent A
consisted of 0.1% formic acid in water and solvent B consisted
of 0.1% formic acid in ACN. 5 μL of each sample was injected
onto aWaters SymmetryC18 5 μm180 μm × 20 mmprecolumn
at a flow rate of 5 μL/min for 5 min at 95% A/5% B, followed by
peptide separation performed on Waters BEH130 1.7 μm C18
100 μm × 100 mm analytical column using gradient from 0 to
45% solvent B at 300 nL/min over 120 min parameters for the
acquisition of precursor ions andMS/MS spectra were the same
as that of described in the “LC–ESI ion trap mass spectrometry
and MS/MS analysis” section. The methods for database search
and protein quantification were the same as described above.

2.9. Real time PCR

RT-PCR was performed to evaluate levels of mRNAs for some
of the proteins we identified as being differentially expressed
in our proteomic approach. The untreated and IL-2 treated NK
cells were homogenized in Trizol (Sigma, Cat No. T9424) and



IL-2-activated 
NK cells

Naïve NK cells 

1999312 414

Fig. 2 – Venn diagram depicting the total number of proteins
identified in naïve or IL-2-activated NK cells. Human primary
NK cells isolated from three healthy donors were cultured in
medium supplemented with or without IL-2 for 16 h. Total
proteins were extracted and digested by trypsin follow by 2D
LC–MS/MS analysis. 2311 proteins were identified from
naïve NK cell samples, while 2413 proteins were identified in
IL-2-activated NK cells. 1999 proteins were commonly
identified in both conditions.
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RNA was extracted according to the manufacturer's instruc-
tions. The RNA was reversely transcribed into cDNA using
Omniscript RT kit from Qiagen (Cat. No. 205111). Quantitative
real-time PCR was performed using the SYBR green chemistry
(SsoFast Evagreen Supermix from BioRad, Cat. No. 172-5201)
in a CFX96 real-time PCR detection system. The qPCR
validated primers used to amplify PTP1B, CD97, and PCNA
were obtained from SA Biosciences (real time PCR primers for
Human PTP1B, Cat No. PPH00730C; CD97, Cat No. PPH07186A;
PCNA, Cat No. PPH00216B and S27, Cat No. PPH17248B). The
three step cycling conditions usedwere, 95 °C for 30 s, followed
Fig. 3 – Linear regression between dNSAF values and known am
myoglobin (c). Log2-transformed dNSAF valueswere plotted as a
by 40 cycles of the denaturation at 95 °C for 1 s, and annealing
at 60 °C for 5 s. The 2−ΔΔCT method was used for relative
quantitation of gene expression. Data was analyzed using the
BioRad CFX manager and GraphPad Prizm.

2.10. Flow cytometry

Flow cytometry was employed to determine purity of the
isolated NK cells (defined CD3−/CD16+/CD56+ cells), monitor
their activation status after treatment with IL-2 by determin-
ing the expression level of CD69, and validate the differential
expression CD48, CD56, CD11b, and CD11c. To determine
purity NK cells were labeled with anti-CD3, -CD16, and -CD56
antibodies conjugated with PE, FITC, and APC, respectively, as
described in our previous work [28,29]. CD69, CD48, CD11b,
and CD11c antibodies used in the study were conjugated to
either FITC or PE as denoted in the figures. Following labeling
with the antibodies, the NK cells were washed and analyzed
on LSR-II (BD Biosciences) flow cytometer. FlowJo® software
was used to analyze the data.
3. Results and discussion

3.1. Identification and quantification of proteins in naïve
and IL-2-activated NK cells

In recent years, targeted MS-based approaches have been
employed to analyze the proteome of human NK-like cell
lines, YTS and NKL [22–26,34]. NK-like cell lines and primary
NK cells differ, substantially in the expression of cell surface
receptors and intracellular signal transduction proteins [34].
Therefore, primary human NK cells were predominantly used
in the current study. We anticipated that the complexity of
unfractionated cell lysates would make it difficult to identify
less abundant proteins.We therefore employed an orthogonal
chromatographic step to reduce sample complexity prior to
MS analysis to improve overall protein identifications. We
adopted a two-dimensional separation approach utilizing
ount of protein standards BSA (a), cytochrome C (b) and
function of log2-transformed protein amounts inmicrograms.
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Fig. 4 – Validation of selected factors differentially expressed in IL-2 stimulated NK cells. Real-time-PCR analysis (a) of mRNA
level of PTP1B, PCNA, and CD97 in naïve NK cells and NK cells activated by IL-2 for 16 h. Flow cytometry was used to monitor
differential expression of CD48 (b), CD56 (c), CD11b (d), and CD11c (e) on naïve NK cells (dotted line) and NK cells stimulated
with IL-2 (solid line) for 16 h. For each factor, data obtained for NK cells isolated from two healthy donors is shown.
Non-specific IgG control is (shaded histogram) is shown only for the CD48 data.
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high-pH RPLC as the first dimension separation. Increasing
the number of fractions collected during first dimension
liquid chromatography typically results in better separation
that allows improved protein identification by downstream
LC–MS/MS analysis [35]. However, since greater number of
fractions also results in increased overall analysis time it is
important to minimize the numbers of fractions but still
produce the best output for LC–MS/MS analysis. To address
the limitation of fraction collection but at the same time
improve the orthogonality of the 2D separation, we adopted a
novel RP-RPLC approach reported by Zou and colleagues [30].
For this approach, 20 fractions were collected in the first
dimensional RPLC. Every two fractions with equal collection
time interval were pooled, one from the early eluted section
and the other from a later elution section (fractions 1 and 11, 2
and 12, and so on). Through this combination only half the
number of fractions was submitted to LC–MS/MS analysis,
significantly reducing the overall analysis time.

For the present work we applied Mascot Percolator which
was embedded into the Mascot search engine to improve
peptide and protein identifications. We compared the number
of peptide spectrummatches (PSMs) identifiedwithMascot and
Mascot Percolator at FDR = 0.1% and it was shown that more
peptides could be identified by Mascot Percolator (data not
shown). In total, 2311 proteins (≥1 unique peptide) were
identified from three naïveNK cell samples, while 2413 proteins
were identified from their IL-2 stimulated counterparts. The
complete list of identified proteins from each donor is shown in
the Supporting information (Table S1). Fig. 2 shows the Venn
Diagrams of the numbers of proteins identified from naïve or
IL-2 activated NK cells isolated from three healthy donors.
There were 1999 proteins in common that were identified in
both cells, whereas 312 proteins and 414 proteins were
identified in only naïve or IL-2 activated NK cell, respectively.

To assess differences between protein abundance in naïve
NK cells and IL-2-activated NK cells, spectral counting, a
label-free protein quantification method was used. To account
for shared peptide sequences among protein isoforms and
achieve better accuracy, we adopted the distributive normalized
spectral abundance factor (dNSAF) strategy previously reported
by Zhang et al. [32]. However, given that the application of
Mascot Percolater in peptide and protein identification may
affect the performance of this approach, we first confirmed its
effectiveness and reproducibility by spiking known amounts of
protein standards into complex mixture of NKL cell lysates. To
estimate the dynamic range and determinewhether therewas a
linear correlation between the known amount of protein and
their measured dNSAF values, the tryptic digests of BSA, bCYC
and eMYG were spiked into tryptic digests of NKL cell lysates
where the amounts of three standardproteinsdistributed evenly
over 3 orders of magnitude in logarithmic scale. After protein
identification with Mascot Percolator, dNSAF values for all
quantifiable proteins were calculated. dNSAF values for BSA,
bCYC and eMYG in different samples were extracted. Fig. 3
shows the linear regression between dNSAF values and known
protein amounts where log2-transformed dNSAF values were
plotted as a function of log2-transformed protein amounts in
micrograms. The results demonstrated acceptable performance
as therewas a linear correlation coefficient of >0.990 for all three
protein standards (Fig. 3a–c). The linear dynamic range for BSA
and bCYC are three orders of magnitude (1024) while the
dynamic range for eMYG is two orders of magnitude (256),
which is probably due to the poor detection at lower concentra-
tion, as the presence of heme stabilizes the structure of eMYG
and makes it resistant to digestion [36]. Based on this result, we
concluded that the application of Mascot Percolater for peptide
and protein identification did not affect the accuracy of protein
quantification by spectral counting used in the present work.
The linearity of our quantification method is maintained
between protein amounts and dNSAF values over a dynamic
range of at least three orders of magnitudes.

We analyzed the proteomes from three donors (three
biological replicates) where each biological replicate contained
three technical replicates to account for the biological and
technical variation across datasets prior to protein quantifica-
tion. According to the criteria that a protein is quantifiable if it
can be detected in at least two of three technical replicates in all
three biological replicates, 1375 proteins identified from both
naïve NK cells and IL-2 activated NK cells were selected for
quantification analysis. The dNSAF value of each protein was
calculated and compared between the two conditions (naïve vs.
IL-2-activatedNK cells). Fold-changewas calculated as the ratio
of dNSAF of protein in IL-2-activated NK cells over that of naïve
NK cells. Threshold levels for significantly up- or down-
regulated proteins were set to more than 2-fold or less than
0.5-fold with p ≤ 0.05 from Student t-test. Altogether, 436, 420
and 456 proteins exhibited significant abundance differences
after IL-2 activation in NK cells isolated from the three donors,
respectively. The complete list of up- and down-regulated
proteins from each donor is shown in the Supporting
information (Table S2). An overlap of 383 proteins was
observed across all three donors and demonstrated similar
trend of up or down-regulation (Table S2). While 301 proteins
were up-regulated following IL-2 activation, 82 proteins were
down-regulated (Table S2). In the discussion that follows, we
focus on a select group of factors that, according to our
proteomic analysis, are differentially expressed in the IL-2
stimulated human NK cells but have not been extensively
studied in the IL-2-mediated modulation of NK cell
responses.

3.2. Functional annotation of IL-2-regulated proteins
identified by quantitative analysis

3.2.1. Activation of JAK–STAT pathway and cell proliferation
IL-2 critically regulates the proliferation and cytotoxicity of
human NK cells. It is well known that IL-2 mediates its effects
through the activation of the JAK–STAT pathway in which
STAT1, STAT3 and STAT5 are activated. In our analysis, three
STAT molecules STAT1, STAT3 and STAT4 were found to be
up-regulated upon IL-2 stimulation. While the participation
and the role of STAT1 and STAT3 in IL-2 signaling have
been well documented, the function of STAT4 is still under
investigation. Wang et al. reported IL-2 induced STAT4
activation as an alternative to the well-established JAK–
STAT pathway in primary NK cells but not in T cells [37],
which may explain why IL-2 enhances cytoxicity in NK
cells but not in T cells, even though both cells have identical
JAK–STAT signaling pathway. Moreover, they investigated the
effect of IL-2 on IL-12-activated signaling pathways in NK cells



Fig. 5 – Geneontologyanalysis of up- anddown-regulatedproteins. (a) Protein functional classification. 383proteins thatwere found
differentially expressed across all three donors could be classified into 25 categories, of which the top four are nucleic acid binding
proteins (17%), hydrolase (11.3%), enzymemodulator (10.4%), and transferase (10.2%). (b) Molecular function. More than 70% of IL-2
regulatedproteins havemolecular function related to catalytic activities (41%) andbinding (34%). (c) Biological process. IL-2 regulated
proteins were found to be involved in 16 biological processes, of which the top three categories are: metabolic process (30.4%), cell
process (15.9%) and transport (11.4%). Gene ontology analysis was performed in PANTHER database (http://www.pantherdb.org/).
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and demonstrated that pretreatment of IL-2 promoted ex-
pression of high level of STAT4 through which the response of
NK cells to IL-12 was enhanced [38]. Given that the results of
current clinical trials for immunotherapy using IL-2 or IL-12
alone were not shown to be quite as successful as expected
[39,40], STAT4 may prove to be a target for the study of

http://www.pantherdb.org/
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synergistic effect between IL-2 and IL-12 for developing more
effective immunomodulatory strategies. Another important
protein involved in JAK–STAT signaling pathway is
protein-tyrosine phosphatase 1B (PTP1B), which was also
shown to be up-regulated by IL-2 and confirmed by RT-PCR
(Fig. 4a). PTP1B is an important phosphatase that plays both
negative and positive roles in diverse signaling pathways.
Although it has been extensively studied as a negative
regulator of insulin and leptin signaling, and more recently
as a positive factor in tumorigenesis, the role of PTP1B during
immune cell signaling is not well characterized. PTP1B and
T-cell PTP (TC-PTP) form the first non-transmembrane sub-
family of PTPs [41]. While previous studies have identified
JAK1 and JAK3 as TC-PTP substrates and implicated TC-PTP in
the regulation of JAK–STAT signaling activated by IL-2, PTP1B
was unable to bind JAK1 and JAK3 [42]. However, other studies
demonstrated that after IFN stimulation PTP1B targets two
other JAK family members, JAK2 and tyrosine kinase 2 (TYK2)
[43]. Also, PTP1B has been implicated in the dephosphoryla-
tion of STAT5 in prolactin signaling [44]. Although PTP1B does
not appear to be directly associated with the regulation of
JAK–STAT activation, it might play an important role in IL-2
signaling through another mechanism.

As expected, many proteins identified to be up or down-
regulated are involved in DNA replication, translation initiation/
elongation/termination or the regulation of cell cycle since one
of the known results of NK cell exposure to IL-2 is stimulation of
cell proliferation. Three DNA replication licensing factor MCM2,
MCM5 and MCM7 were found to be up-regulated. DNA replica-
tion licensing is the process of ensuring that chromosomes are
duplicated once and only once during the cell cycle. The MCM
proteins are required forDNA replication licensing and consist of
a group of ten conserved factors functioning in the replication of
the genomes of archae and eukaryotic organisms. Among these,
MCM2–7 proteins are related to each other and form a family of
DNA helicases at the initiation step of DNA synthesis. While the
other MCM proteins were not detected in our analysis possibly
due to their low abundance, the elevated expression of MCM2,
MCM5 andMCM7 implicated that increased NK cell proliferation
may be attributable to these proteins. Lymphocyte proliferation
is often used tomark immune response following immunother-
apy. Identifying proteins that improve monitoring of NK cell
proliferation to determine the extent of the immune response
may prove to be crucial for clinical decision-making during the
immunotherapy in order to minimize the risk of toxicity in
patients.

Another protein that is associated with the proliferation
process of NK cells is proliferating cell nuclear antigen (PCNA)
which is synthesized in early G1 and S phases of the cell cycle.
Increased PCNA expressionwas also observed in our proteomic
analysis. We validated our proteomic observations using real
time PCR and confirmed that the level of PCNA mRNA
expression was increased by 2-fold in NK cells after 16 h of
stimulation by IL-2 (Fig. 4a). PCNA is a marker that can be used
to detect early stage T-cell proliferation, as it was found that
unstimulated human peripheral blood T-lymphocytes were
PCNA negative and expression of PCNA in these cells increased
after stimulation [45]. In the clinical setting, PCNA can be used
as a marker to monitor T-cell function that reflects immune
condition in patients undergoing immunosuppressive therapy
[46,47]. Such monitoring of PCNA would be crucial in reducing
the risks and providing optimal immunosuppressive therapy
for each transplant recipient [46–48]. Recently, PCNA mRNA
level in the peripheral blood were measured by real-time
RT-PCR to monitor patient's immune condition after renal
transplantation [49]. Increased PCNA expression observed in
our analysis suggest that monitoring the levels of this antigen
may provide useful guidance of the NK cell proliferation status
in patients treated with immunotherapies. PCNA is recruited to
the NK cell immune synapse and via its interaction with the
NKp44 receptor attenuates NK cell function. In this context
PCNA expression allows cancer cells to escape NK cell attack. It
remains to be determined if the increased expression of PCNA
represents a compensatory mechanism to attenuate immuno-
logical function of the IL-2-stimulated NK cells [50,51].

3.2.2. Cluster of differentiation (CD) molecules
In addition to changes in molecules that regulate cell prolifer-
ation and activation of cytotoxicity in NK cells, changes in
cluster of differentiation (CD) molecules were also expected, as
their functions are often closely tied to the immune system.
While CD56, CD48, CD98, CD97, CD225, and CD300a showed
increased expression in our analysis, notably, there were
decreases in the levels of CD11b, CD11d, CD11c and CD43 after
IL-2 stimulation. Flow cytometry assays were used to validate
the increased expressionof CD48 andCD56on the IL-2 activated
NK cells (Fig. 4b, c). CD48 is a glycosyl-phosphatidyl-inositol
(GPI)-anchored protein expressed on the surface of NK cells and
is knownas a co-stimulatory factor anda high affinity ligand for
natural killer cell receptor 2B4 [52,53]. 2B4/CD48 interactions in
NK cells are required for the enhanced proliferation and the
development of optimal cytolytic and secretory NK effector
functions during IL-2 activation [54]. Increased expression of
CD48 on the NK cells may allow this ligand to be presented to
the 2B4 receptor on opposing NK, T or B cells, thereby priming
the NK cells to express IL-13 in the presence of another
co-stimulatory signal [55].

Human CD97 is a member of the EGF-TM7 family of
adhesion class heptahelical receptors and was identified as an
early activation marker for human lymphocytes [56]. We
observed and validated increased CD97 level in response to
IL-2 by real time RT-PCR (Fig. 4a) that was comparable with the
results from Kop et al. [57].

CD98 is a transmembrane glycoprotein identified as a
lymphocyte activation antigen [58,59]. Because the level of
CD98 on cell surface was markedly increased in activated
lymphocytes, CD98 has been mainly used as a T cell activation
marker [58,59] and has been implicated for its role in regulating
integrin signaling, amino acid transport and immune response
[60,61]. Integrin–CD98 interaction acts as a co-stimulatory signal
in T cells [62,63]. So far no studies have investigated the role of
CD98 in NK cell activation.

CD300a is a cell surface inhibitory receptor that is expressed
in all human NK cells and is known to down-regulate the
cytotoxicity of NK cells [64]. Different studies have also
evaluated the CD300a activity in immune regulation in other
immune cells such as plasmacytoid dendritic cells [65], T cells
[66] and neutrophils [67]. However, little is known about the
functionality and the ligand of CD300a in NK cells so far and it
was only recently that Nakahashi-Oda et al. identified



Table 1 – Novel pathways that may be involved in IL-2
signaling in human primary NK cells and names of IL-2
regulated proteins that are known to be the components
of these pathways.

Ubiquitin proteasome pathway (11)
26S proteasome non-ATPase regulatory subunit 1 (PSMD1)
26S proteasome non-ATPase regulatory subunit 3 (PSMD3)
26S proteasome non-ATPase regulatory subunit 4 (PSMD4)
26S proteasome non-ATPase regulatory subunit 7 (PSMD7)
26S proteasome non-ATPase regulatory subunit 11 (PSMD11)
26S proteasome non-ATPase regulatory subunit 12 (PSMD12)
NEDD8-activating enzyme E1 catalytic subunit (UBA3)
26S protease regulatory subunit 4 (PRS4)
Ubiquitin-conjugating enzyme E2 L3 (UB2L3)
Ubiquitin carboxyl-terminal hydrolase isozyme L5 (UBP5)
SUMO-activating enzyme subunit 1 (SAE1)

Integrin signaling pathway (9)
Integrin beta-7 (ITB7)
Dual specificity mitogen-activated protein kinase kinase 1 (MP2K1)
Integrin alpha-X (ITAX)
Ras-related C3 botulinum toxin substrate 3 (RAC3)
ADP-ribosylation factor 3 (ARF3)
Rho-related GTP-binding protein RhoB (RHOB)
Actin, gamma-enteric smooth muscle (ACTH)
Proto-oncogene tyrosine-protein kinase Fyn (FYN)
Integrin alpha-D (ITAD)

PDGF signaling pathway (8)
Dual specificity mitogen-activated protein kinase kinase 1 (MP2K1)
Signal transducer and activator of transcription 1-alpha/beta (STAT1)
Signal transducer and activator of transcription 3 (STAT3)
Signal transducer and activator of transcription 4 (STAT4)
Ras-related protein Rab-11B (RB11B)
Rho GTPase-activating protein 4 (RHG04)
Rho-related GTP-binding protein RhoB (RHOB)
Ribosomal protein S6 kinase alpha-3 (KS6A3)

EGF receptor signaling pathway (7)
Dual specificity mitogen-activated protein kinase kinase 1 (MP2K1)
Signal transducer and activator of transcription 1-alpha/beta (STAT1)
Signal transducer and activator of transcription 3 (STAT3)
Signal transducer and activator of transcription 4 (STAT4)
Ras-related C3 botulinum toxin substrate 3 (RAC3)
Serine/threonine-protein phosphatase 2A catalytic subunit beta

isoform (PP2AB)
Mitogen-activated protein kinase 14 (MK14)

Wnt signaling pathway (6)
Beta-arrestin-1 (ARRB1)
Serine/threonine-protein phosphatase 2A catalytic subunit beta

isoform (PP2AB)
Histone deacetylase 1 (HDAC1)
C-terminal-binding protein 2 (CTBP2)
Nuclear factor of activated T-cells, cytoplasmic 2 (NFAC2)
Actin, gamma-enteric smooth muscle (ACTH)

160 J O U R N A L O F P R O T E O M I C S 9 1 ( 2 0 1 3 ) 1 5 1 – 1 6 3
phosphatidylserine (PS), which is exposed on the outer leaflet of
the plasmamembrane of apoptotic cells, as a ligand for CD300a
[68]. Alvarez et al. reported that inflammatory stimuli such as
granulocyte macrophage-colony stimulating factor (GM-CSF) or
lipopolysaccharide (LPS) could induce a significant increase in
cell surface expression of CD300a in neutrophils and that the
signaling through this receptor down-regulated neutrophil
function [67]. Activation and regulation of CD300a by cytokines
in NK cells have never been reported but our results and the
research in other cell-types suggest that CD300a may play a
critical role in NK cell responses. Further investigation is
required to understand how CD300a is regulated by IL-2 and
the physiological role of CD300a in NK cells.

CD225 is also known as interferon (IFN)-induced transmem-
brane protein 1 (IFITM1)which is amember of the IFN-inducible
transmembrane protein family [69]. It is known that the
transcription of CD225 is induced by IFN-γ [70], and that CD225
can mediate IFN-γ-induced inhibition of cell proliferation and
inhibit ERK activation [71]. CD225 has also been implicated in
the control of cell growth, as it can arrest cell cycle progression
in the G1 phase in a p53-dependent manner [71]. The role of
CD225 in NK cell activation has never been reported. However,
as an important factor for growth control, it is likely that CD225
mediates the negative regulation andplays an anti-proliferative
role during NK cell activation.

Surprisingly, proteomic analysis indicated that IL-2 stimu-
lation results in decreased expression of the integrin α subunits
CD11b, CD11c and CD11d. Even CD43, which along with the
CD11 molecules are described as NK cell maturation markers
[72]. Flow cytometry analysis indicated that IL-2 stimulation
results in increased expression of CD11b and CD11c on the NK
cell surface (Fig. 4d, e). We are currently investigating if
methodological issues resulting from the processing of the NK
cell lysates or the generation of the tryptic peptides from these
lysates contribute to the discrepancy in these results.

3.3. Gene ontology and pathway analysis

To obtain more information about the molecular function of
IL-2 regulated proteins and to identify pathways possibly
involved in IL-2 activation in NK cells, we performed gene
ontology and pathway analysis using the PANTHER database
(http://www.pantherdb.org/). Overall, 383 proteins that were
found differentially expressed across all three donors could be
classified into 25 categories of which the top four are nucleic
acid binding proteins (17%), hydrolases (11.3%), enzyme
modulators (10.4%), and transferases (10.2%) (Fig. 5a). This is
in agreement with the fact that the activation of NK cells in
response to cytokines requires protein regulators to bind to
DNA and activate new protein synthesis for cell proliferation
and enhanced cytotoxicity. An analysis of the molecular
function of these proteins revealed that most of these
proteins are involved in catalytic activities (41%) and binding
(34%) (Fig. 5b). Furthermore, these proteins were found to be
involved in various biological processes, of which the top
three categories are: metabolic process (30.4%), cell process
(15.9%) and transport (11.4%) (Fig. 5c). Taken together, the data
from gene ontology analysis suggested that most of these
proteins are involved in critical cellular events triggered by
IL-2 in the NK cells.
In search for novel pathways that might be involved in IL-2
signaling in NK cells, a pathway analysis was also performed
in PANTHER database and a total of 90 pathways were found
to be related to the IL-2 regulated proteins based on this study.
In addition to the previously known pathways, such as JAK–
STAT pathway, MAPK/ERK and NF-κB pathway, other path-
ways that are very likely to be associated with IL-2 signaling
include: ubiquitin proteasome pathway, integrin signaling
pathway, PDGF signaling pathway, EGFR signaling pathway
and Wnt signaling pathway. Table 1 provides the names of
IL-2 regulated proteins identified in our analysis that are
known to be the components of these pathways. Although the

http://www.pantherdb.org/
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roles of these pathways in promoting or regulating the
function of NK cells have been investigated in the past, so
far none of them have been directly linked to the activation of
NK cells by IL-2, and therefore could be the new targets for
future studies. Given the pleiotropic effects of IL-2 and diverse
functions of IL-2-activated NK cells, there should be many
possible downstream effectors that may be necessary to drive
IL-2-induced effects.
4. Conclusions

In summary, we have developed an effective method for the
proteomic analysis in human primary NK cells.We successfully
employed 2D LC to reduce the sample complexity prior to MS
analysis. To improve protein identification, Mascot Percolator
was employed, with 2311 and 2413 proteins being identified
from naïve and IL-2-activated NK cells, respectively. Label-free
quantitative analysis via spectral counting revealed a list of 383
proteins thatwere either upor down-regulated in IL-2 signaling.
Functional annotation of IL-2 regulated proteins in the present
work revealed several proteins with important functions
related to IL-2 signaling that could potentially serve as targets
for future investigation of IL-2 signaling in human primary NK
cells. A pathway analysis was also performed and revealed
several novel pathways not previously known to be involved in
IL-2 signaling. The quantitative proteomic analysis in present
work provided a comprehensive view of proteins that may be
associated with IL-2 signaling. Further functional analysis of
proteins of interests will improve our understanding of
signaling transduction and biological processes involved in NK
cell activation by IL-2.

Supplementary data to this article can be found online at
http://dx.doi.org/10.1016/j.jprot.2013.06.024.
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Abstract
Shotgun proteomics commonly utilizes database search like Mascot to identify proteins from
tandem MS/MS spectra. False discovery rate (FDR) is often used to assess the confidence of
peptide identifications. However, a widely accepted FDR of 1% sacrifices the sensitivity of
peptide identification while improving the accuracy. This article details a machine learning
approach combining retention time based support vector regressor (RT-SVR) with q value based
statistical analysis to improve peptide and protein identifications with high sensitivity and
accuracy. The use of confident peptide identifications as training examples and careful feature
selection ensures high R values (>0.900) for all models. The application of RT-SVR model on
Mascot results (p=0.10) increases the sensitivity of peptide identifications. q value, as a function
of deviation between predicted and experimental RTs(Δ RT), is used to assess the significance of
peptide identifications. We demonstrate that the peptide and protein identifications increase by up
to 89.4% and 83.5%, respectively, for a specified q value of 0.01 when applying the method to
proteomic analysis of the natural killer leukemia cell line (NKL). This study establishes an
effective methodology and provides a platform for profiling confident proteomes in more relevant
species as well as a future investigation of accurate protein quantification.
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The mucin MUC16 (CA125) binds to NK cells and monocytes
from peripheral blood of women with healthy pregnancy and
preeclampsia

Chanel Tyler*, Arvinder Kapur*, Mildred Felder*, Jennifer A. Belisle*, Christine Trautman*,
Jennifer A.A. Gubbels†, Joseph P. Connor*, and Manish S. Patankar*,1

*Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI
†Department of Biology, Augustana College, Sioux Falls, SD

Abstract
Problem—MUC16 (CA125) released from ovarian tumors binds to NK cells and monocytes via
the inhibitory receptor Siglec-9. Here, we investigate if MUC16 also binds to circulating immune
cells during pregnancy and in women with preeclampsia.

Method of study—MUC16 binding was monitored by flow cytometry and immunoprecipitation
and RT-PCR was used to monitor indigenous expression in immune cells. Serum CA125 levels
were measured by a clinical assay.

Results—MUC16 was equally distributed on Siglec-9pos CD16pos/CD56dim and CD16neg/
CD56br NK cells in the healthy pregnant and preeclampsia groups. While serum CA125 levels and
number of NK and monocytes were similar, increased binding of MUC16 was observed on these
immune cells in the preeclampsia cohort as compared to the healthy pregnant samples.

Conclusion—MUC16 binding to NK cells and monocytes likely contributes to tolerance of the
fetal allograft from maternal responses and may also serve as a novel biomarker for preeclampsia.

Keywords
Immune cell subsets; MUC16; CA125; Siglec-9; Biomarker

Introduction
CA125, is a tumor biomarker used extensively to monitor epithelial ovarian cancer 1-3.
CA125 is a repeating peptide epitope present in the tandem repeat region of MUC16, a 3-5
million Da heavily glycosylated mucin overexpressed by epithelial ovarian tumors 4-6. We
have previously demonstrated that ovarian tumors utilize MUC16 to attenuate the cytolytic
responses of NK cells 7, 8. The large molecular weight and high negative charge of this
heavily glycosylated mucin also acts as a barrier that prevents the NK cells from forming
activating immunologic synapses with the ovarian tumor targets 6, 7, 9.

MUC16 is a membrane-spanning mucin that is initially expressed on the surface of epithelial
cells and especially on the epithelial ovarian tumor cells 6, 10. Proteolytic cleavage results in
release of the mucin from the cell surface. The shed mucin, (sMUC16) molecules traverse to
the peripheral blood from the extracellular milieu, where they can be detected using the

1Corresponding author: Manish S. Patankar, Department of Obstetrics and Gynecology, University of Wisconsin-Madison, H4/657
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clinical serum CA125 test. In our analysis of peripheral blood mononuclear cells (PBMC)
isolated from ovarian cancer patients and the immune cells isolated from their peritoneal
fluid (PFMC) we observed that approximately 10-15% of B cells, 30-40% of NK cells and
>90% of monocytes were positive for sMUC16 11, 12. Several lines of evidence indicate that
the PBMC and PFMC do not express sMUC16 but instead specifically bind to the mucin
released from ovarian tumors 11, 12.

We have now also demonstrated that sMUC16 predominantly binds to immune cells via
Siglec-9 11, a α2-3-linked sialic acid binding I-type lectin known to serve as an inhibitory
immune cell receptor 13-17. Siglec-9 is expressed on approximately 30-40% of the CD16pos/
CD56dim NK cell subsets and in ovarian cancer patients these cells are double positive for
sMUC16 11. High expression of Siglec-9 is observed on >90% of the monocytes and a
correspondingly high level of sMUC16 binding is observed on these immune cells in
ovarian cancer patients.

MUC16 is expressed by endometrial epithelial cells and also in the decidua 18-21. Indeed,
serum CA125 levels increase during pregnancy 22, which is one of the reasons why serum
CA125 cannot be used as an early diagnostic test exclusively for ovarian cancer.
Considering our previous work on sMUC16 binding to PBMC and PFMC of ovarian cancer
patients 11, 12, we investigated if the mucin is also present on specific subsets of immune
cells of pregnant women.

Our results indicate that the binding pattern of sMUC16 to NK cells and monocytes from
peripheral blood of pregnant women closely matches the expression of Siglec-9 on these
immune cells. Important differences were observed in the subsets of NK cells from normal
pregnant women and preeclampsia patients that bind to sMUC16 and express Siglec-9. Data
presented in this study lays the groundwork for future studies on the potential biological
significance of sMUC16 binding to immune cells in healthy pregnant women and
preeclampsia patients. In addition, differences in the binding patterns of sMUC16 to NK
cells and the expression of Siglec-9 on these cells may also be exploited for the development
of a novel diagnostic test for the detection of preeclampsia.

Methods
Cell lines and reagents

Siglec-9 expressing Jurkat cells were a kind gift from Dr. Jim Paulson (Scripps Research
Institute, Ca). The Jurkat cells were cultured in RPMI-1640 media supplemented with 10%
fetal calf serum. All other reagents were commercially obtained. ECC-1 and OVCAR-3 cells
were purchased from ATCC and were cultured in RPMI 1640 media containing 10% fetal
Bovine serum. Fluorophore conjugated Anti-CD14 (PerCP-CY5.5, clone: M5E2), CD3
(APC-Cy7, clone SK7), CD56 (Alexa 700, clone B159), CD16 (PE-Cy7), clone 3G8), CD19
(PE, clone HIB19), Siglec-9 (CDw329; FITC, clone E10-286) were from BD Biosciences
and secondary antibodies were purchased from Jackson ImmunoResearch. All other reagents
were from Sigma or Invitrogen.

Subjects
All subjects signed an informed consent and the study was approved by the Institutional
Review Boards of the University of Wisconsin-Madison and Meriter Hospital. The women
were recruited at the time of admission to Labor and Delivery. Subjects were considered
eligible controls if they had completed 37 weeks of gestation, had an uncomplicated prenatal
course, and had no preexisting co-morbidities. Eligible preeclamptic subjects were identified
using strict diagnostic criteria. Prenatal records were reviewed to ensure that there was no
evidence of hypertension prior to twenty weeks of gestation. Hypertension was defined as
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systolic blood pressures of at least 140 mm Hg or diastolic blood pressures of at least 90 mm
Hg two times measured 6 hours apart. The definition of protienuria is the excretion of 300
mg of protein or greater in a 24 hour urine collection 23. Urine dip analysis alone without
confirmatory 24 hour urine protein excretion was not considered sufficient to enroll a
subject into the study. Subjects were excluded from the study if they carried the diagnosis of
chronic hypertension, diabetes, anti-phospholipid lipid antibody syndrome, or systemic
lupus erythematous. Subjects were also excluded if given the diagnosis of abruption or had
meconium stained amniotic fluid. Of the 26 women included in the study there was one
African American and all others were Caucasian. Table 1 shows the baseline characteristics
of the groups. The groups showed significant difference in age as well as gestational age
which is expected when considering the disease process.

Isolation of peripheral blood lymphocytes
Blood samples were obtained upon delivery from full term uncomplicated pregnancies as
well as pregnancies complicated by preeclampsia. Mononuclear cells were isolated under
sterile conditions using Histopaque (Sigma Aldrich, St Louis, MO). The mononuclear layer
was retained and washed once with PBS-BSA before being cryopreserved in 90% fetal
bovine serum (FBS; Hyclone) containing 10% dimethyl sulphoxide (DMSO). Serum
samples were layered over Histopaque with the mononuclear layer being isolated and
washed and cryopreserved.

Analysis of Siglec-9 and MUC16 on NK cells by flow cytometry
Cryopreserved cells were thawed and washed (15 min at 300Xg in PBS-BSA). Incubation of
cells with primary and secondary antibodies was performed for 30 min on ice. After
incubation with each antibody, cells were washed with PBS-BSA at 300Xg for 10 min at
4°C. Cells were blocked with goat IgG prior to staining with anti-MUC16 antibody VK8.
The cells were washed and Allophycocyanin (APC)-conjugated goat anti-mouse (GAM)
IgG, antibody was added. The cells were then washed and incubated with mouse IgG for 20
min to bind any additional Fab sites on the GAM secondary. The cells were then incubated
with a cocktail of fluorophore-conjugated antibodies to stain for CD3, CD45, CD56, CD16,
and Siglec-9 11, 12.

After the final wash, cells were resuspended in approximately 300 μl of PBS-BSA.
Immediately prior to data acquisition on the LSRII flow cytometer (Beckton Dickinson, San
Jose, CA), DAPI, a viability indicator was applied to each sample. Each day, quality control
procedures were run on the LSRII prior to data acquisition. Beckton Dickinson Cytometry
Setup and Tracking (CST) beads were run daily to reproducibly set up the cytometer. Use of
these beads allows for determination of cytometer baseline, the standard deviation of
electronic noise, assessment of photomultiplier tube (PMT) drift, and adjusts cytometer
settings to maximize population resolution in each detector. These measurements also verify
that data is acquired within the linear range of each PMT. Spherotech Rainbow Beads, both
mid-range and ultra, were run each day to determine that for a given PMT voltage, nearly
identical target values (mean fluorescence intensity (MFI), were obtained for each detector
of interest. Setting the instrument up in this manner, with these controls, allowed for the
negative controls from each patient for each day to give rise to comparable MFIs in each
fluorescence channel. From here, compensation controls were generated and acquired for
experiments done on individual days to adjust for spectral overlap between PMTs. Flow Jo
software was used to analyze the flow cytometry data.

CA-125 Assay
Serum was separated and the number of units of CA125 in the sample was determined by
using the standard clinical radioimmunoassay (Abbott Axsym, Abbott Park, IL). CA125
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measurements were conducted in the clinical pathology laboratory of the University of
Wisconsin-Madison Hospital and Clinics.

Immunoprecipitation of sMUC16 from immune cell lysates
The PBMC’s from healthy donor, ovarian cancer patient and OVCAR-3 ovarian cancer cell
line were lysed in RIPA buffer containing protease inhibitors. After calculating the protein
concentration (BCA) lysate equivalent to 500 μg of total protein was mixed with 100 μg of
VK-8 antibody and tubes were rotated overnight at 4°C. Protein G-agarose beads (100 μl)
were added to the mixture and the tubes were rotated for 1 h at room temperature.
Suspensions were centrifuged (400Xg for 1 min), supernatants were removed, and the beads
were washed three times with RIPA buffer (500 μl) containing protease inhibitors. Beads
were then resuspended in 30 μL Laemmli buffer, boiled for 5 min and loaded on 7.5% SDS-
PAGE gel. Proteins from the gel were transferred to PVDF membranes and MUC16 was
detected using the VK-8 as the primary antibody and a HRP-conjugated goat anti-mouse as
the secondary antibody.

MUC16 RT-PCR
OVCAR-3, ECC-1, and PBMC samples were homogenized in Trizol and RNA was isolated
according to the manufacturer’s instructions (Invitrogen). The RNA was reverse transcribed
into cDNA using Omniscript RT kit from Qiagen (Cat.No.205111). The MUC16 and
GAPDH (Glyceraldehyde 3-phosphate dehydrogenase) were amplified with the respective
primers (MUC16 forward: 5′GCCTCTACCTTAACGGTTACAATGAA3′; reverse:
5′GGTACCCCATGGCTGTTGTG-3:, and GAPDH forward:
GAGTCAACGGATTTGGTCGT, reverse: TTGATTTTGGAGGGATCTCG) using fast
cycling PCR kit from Qiagen as described in our earlier studies 12, 24. MUC 16 was
amplified using the initial activation for 10 minutes at 95°C, followed by 35 cycles of 15
seconds at 95°C and 1 minute at 60°C. The cycling conditions used for amplifying GAPDH
were, initial activation at 95°C for 5min, followed by 30 cycles of the denaturation at 96°C
for 5seconds, annealing at 60°C for 5seconds and extension at 68°C for 10seconds, with
final extension at 72°C for 1min. GAPDH was used as an endogenous reference to
determine the integrity of the mRNA in each sample. The PCR product was run on 2.5%
agarose gel at 100V for 2 hr and bands were visualized using Flourchem8900 ultraviolet
transilluminator.

Statistics
The Flo Jo flow cytometry software was used to obtain the raw data on the percentage of
immune cells positive for sMUC16, Siglec-9 and other immune markers. The data was
plotted using the Graph Pad statistical software. Statistical significance of the data was
determined using the non-parametric Mann Whitney U test.

Results
sMUC16 binds to immune cells isolated from the peripheral blood of pregnant women

Immune cells from healthy individuals and ovarian cancer patients do not express
endogenous MUC16 but instead bind the mucin that is present in the serum and the
peritoneal fluid of ovarian cancer patients 11. Higher levels of sMUC16 (measured as
CA125) are also observed in the serum of pregnant women as compared to the healthy non-
pregnant cohort 21, 25. We therefore tested if similar to our observation with immune cells
from ovarian cancer patients, sMUC16 also binds to immune cells of pregnant women.

MUC16 was immunoprecipitated from the lysates of PBMCs isolated at the time of delivery
from healthy pregnant women. However, this mucin was not detected in the
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immunoprecipitates from the lysates of healthy donor derived PBMCs (Fig. 1a). RT-PCR
studies demonstrated that similar to ovarian cancer 12, the PBMCs from healthy pregnant
women did not express endogenous MUC16 (Fig. 1b).

We have previously shown that sMUC16 binds to immune cells via Siglec-9 11. Binding of
sMUC16 to Siglec-9 is rapid as shown by in vitro studies with Jurkat cells expressing this
receptor (Fig. 2). The lack of MUC16 synthesis by immune cells of pregnant women
suggested that similar to our observations in ovarian cancer, MUC16 is also captured on the
surface of immune cells in pregnancy via Siglec-9. In subsequent experiments we therefore
simultaneously monitored sMUC16 binding and Siglec-9 expression on the immune cells
from pregnant women and preeclampsia patients by using multi-color flow cytometry.

sMUC16 binding pattern to immune cell subsets in pregnancy
All of our flow cytometry experiments require careful standardization of the instruments
with calibration beads. We are therefore able to compare the binding pattern of sMUC16 and
Siglec-9 expression in immune cells from pregnant subjects. Analysis of PBMC from
healthy pregnant women indicated sMUC16 binding to B cells, NK cells and monocytes
(Fig. 3). In the case of NK cells, equal levels of the mucin were observed on the CD16pos/
CD56dim and CD16neg/CD56br subsets (Fig. 3). The sMUC16 binding pattern in pregnancy
samples matched the expression of Siglec-9 on the two NK cell subsets, further suggesting
that Siglec-9 is the predominant receptor for sMUC16 on these immune cells (Fig. 3).

Low level of sMUC16 was detected on CD3pos T cells that have previously been shown to
express only low levels of Siglec-9 17. On the other hand, monocytes express high levels of
Siglec-9 and were also strongly positive for sMUC16 (Fig. 3). In the case of B cells from
pregnant women only 10% of the cells were double positive for sMUC16 and Siglec-9 even
though approximately 80% of the Siglec-9neg B cells were positive for sMUC16 (Fig. 3).
These data suggest that at least on the B cells, sMUC16 binding is Siglec-9-independent.
Galectin-1 is another reported binding partner of MUC16 26. We have not found any
correlation between Galectin-1 expression on B cells and sMUC16 (data not shown).

NK cell bound sMUC16 is detected even at low serum CA125 levels
Maximum serum CA125 levels are observed in the first trimester of pregnancy 22, 25. We
therefore monitored serum CA125 levels and immune cell bound sMUC16 in three women
before and at 9 and 18 weeks of pregnancy. A gradual increase in serum CA125 was
observed at 9 weeks of pregnancy 12. Continued monitoring of these three patients at 18
weeks of the pregnancy (same gestation as that monitored in our previous study 12) showed
a trend toward lower serum CA125 levels (Fig. 4). However, levels of sMUC16 bound to
immune cells continued to show an upward trend at 18 weeks of pregnancy even as the
serum CA125 levels decreased (Fig. 4).

MUC16 binding to immune cells of patients with preeclampsia
Impairment of immune responses, especially those mediated by decidual NK cells, have
been associated with the pathogenesis of preeclampsia 27, 28. Given the demonstrated
immunomodulatory roles of sMUC16 7, 8, we next determined if there were any differences
in the binding pattern of this mucin to immune cells in preeclamptic patients compared to
healthy pregnant women. First, we confirmed the results of previous studies 22, 29, 30 that the
serum CA125 levels were not significantly different between healthy pregnant women and
preeclampsia patients (Fig. 5a). Similarly, there was no statistically significant difference in
the percentage of monocytes (Fig. 5b) and NK cells (data not shown) in the PBMC of
healthy pregnant women and preeclampsia patients.
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Next we compared the binding of sMUC16 and expression of Siglec-9 on NK cells and
monocytes from PBMC of preeclampsia patients and healthy pregnant subjects. Samples
from healthy pregnant women described in Table 1 were analyzed in these experiments but
did not include samples from patients who were already studied for experiments described in
Fig. 3. The preeclampsia cohort included patients with both mild as well as severe disease,
however a subgroup analysis was not performed in this initial study. Similar to our
observations in healthy pregnant women, sMUC16 was also detected on NK cells and
monocytes isolated from the PBMC of patients with preeclampsia (Fig. 6 and 7). The pattern
of sMUC16 binding was distinct between the NK cell subsets of healthy pregnant women
and preeclamptic women. Siglec-9 expression was comparable on the CD16pos/CD56dim

and CD16neg/CD56br NK cells of the healthy pregnant women and the preeclampsia patients
(Fig. 6a and b). However, a statistically significant increase in sMUC16 binding was
observed on the CD16pos/CD56dim and CD16neg/CD56br NK cells of preeclampsia patients
as compared to the healthy pregnant group (Fig. 6a and b). Significant differences were also
observed in the case of monocytes isolated from healthy pregnant women and patients with
preeclampsia. Increased sMUC16 binding was observed on monocytes of preeclampsia
patients (Fig. 7). A trend for increased expression of Siglec-9 on the monocytes of
preeclampsia patients was observed. However, the differences in expression levels of
Siglec-9 between the two cohorts were not statistically significant (p=0.649; Fig. 7).

Discussion
Mucins are high molecular weight glycoproteins that exhibit important biological roles via
their carbohydrate as well as protein epitopes 10, 31. Probably the best characterized roles of
the protein epitopes of mucins are the importance of the C-terminal domains of mucins such
as MUC1 and MUC4 in intracellular signaling 32. Oligosaccharides attached to the
extracellular domains of mucins have also been shown to interact with different lectin
receptors and influencing functions such as cell-cell adhesion and regulating immune
responses 33-35. MUC16 is, to date, the largest mucin identified in the human genome and
similar to other mucins of its class plays a major biological role in normal as well as
pathologic tissues via its extensive N-linked and O-linked oligosaccharide chains and its
approximately 24,000 amino acid protein backbone 7, 10, 36-38.

Highlights of the biological activities of MUC16 reported at this point include its role in (a)
facilitating ovarian tumor metastasis via its interactions with mesothelin, a GPI-anchored
glycoprotein expressed on mesothelial cells and cancer cells 37-39, (b) allowing ovarian
tumor cells to escape NK cell immune synapse formation and directly inhibiting the ability
of NK cells to cytolyse cancer targets 7, 8, (c) imparting resistance to chemotherapy in
ovarian cancer cells 40, (d) contributing to cell survival in cancer cells 41, 42, and (d) serving
as a barrier to adhesion of trophoblasts to the endometrial epithelium and of bacteria to the
corneal epithelia 43. Considering this background, our observations that sMUC16 binds to
immune cells during pregnancy and shows higher level of binding to the CD16neg/CD56br

NK cell subset and monocytes from preeclamptic patients are likely to have important
physiologic consequences. First, sMUC16 binding to monocytes and CD16pos/CD56dim NK
cells is likely to inhibit the cytolytic activities of these immune cells, as shown in our
previous study thereby ensuring suppression of maternal cytotoxic immune responses
against the fetal tissues 8.

Second, the CD16neg/CD56br NK cells exhibit low cytotoxicity and instead are high
producer of cytokines 44. This NK cell subset has been conclusively implicated as
performing a pro-fetal growth function by expressing angiogenic cytokines that enhance
trophoblastic invasion of the uterine spiral arterioles 28.
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Recent data emerging from experiments with monocytic cell lines indicates that engagement
of Siglec-9 induces these cells to increase expression of the immunosuppressive cytokine
IL-10 45. This cytokine is known to promote placental angiogenesis. Thus sMUC16 binding
to monocytes and NK cells may likely promote fetal development. Increased binding of
sMUC16 to CD16neg/CD56br NK cells and monocytes in preeclampsia may be a corrective
maneuver to increase VEGF levels to promote angiogenesis in pregnancy.

Preeclampsia is a hypertensive disorder unique to pregnancy and affects 2-7% of
pregnancies 23, 46. It is a major cause of both maternal and fetal morbidity and mortality.
Considered a leading cause of iatrogenic prematurity, preeclampsia is characterized by poor
perfusion to multiple vital fetal organs which is reversed upon delivery. A primary
pathological feature of preeclampsia is insufficient invasion of the spiral arterioles by the
fetal trophoblast with subsequent widespread systemic endothelial dysfunction. CD16neg/
CD56br NK cells present in the decidua are implicated in successful trophoblastic invasion
of the uterine spiral arterioles and the regulation of uterine blood flow 28.

Maternal hypertension is the primary mode of detection of preeclampsia. Increase in
maternal blood pressure however occurs at a later stage in pregnancy. Attempts are therefore
underway to identify biomarkers that can detect the onset of preeclampsia at an early
stage 47-49. Past reports have studied potential increases in the serum levels of CA125 and
demonstrated no significant change in the levels of this marker between women with healthy
pregnancies and those with preeclampsia 22, 29. The studies presented here suggest a novel
method for the identification of biomarkers that can predict preeclampsia. Based on this
method we predict that binding of sMUC16 bound to circulating CD16neg/CD56br NK cells
and monocytes above a threshold value may serve as an important method for detection and
monitoring of preeclampsia. Additionally, since sMUC16 also binds to CD16pos/CD56dim

NK cells and monocytes in ovarian cancer patients monitoring the levels of this mucin on
immune cells may also prove important in detecting and monitoring ovarian cancer 11, 12.
Immune cell bound sMUC16 provides an advantage over the conventional serum CA125
assay as it does not primarily rely on the absolute concentration of the biomarker in the
serum; a major obstacle since the concentration of the biomarker may vary based on its rapid
turnover by the liver 50; but instead relies on the measurement of the captured antigen on
specific immune cell subsets.

Analysis of a large cohort of healthy donors, healthy pregnant women, and patients with
ovarian cancer or preeclampsia will be necessary to establish threshold values for sMUC16
binding to NK cell subsets and monocytes to distinguish between healthy pregnant women
and patients with preeclampsia. These studies are currently underway in our laboratories.
Sequential samples obtained from ovarian cancer patients undergoing chemotherapy and
pregnant diabetic women (a high risk group for preeclampsia) are being monitored for
sMUC16 binding and Siglec-9 expression on immune cell subsets. These studies will be
very useful in providing a profile of sMUC16 binding and Siglec-9 expression on immune
cells and its potential in early identification and monitoring of ovarian cancer and
preeclampsia.
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Fig. 1.
sMUC16 is captured but not expressed by immune cells of pregnant women. a, PBMC
isolated from healthy pregnant women (lane 1), and a non-pregnant individual were lysed
and immunoprecipitated with the anti-MUC16 antibody, VK8 51. The immunoprecipitated
material (5 μg/lane) was analyzed by western blotting and VK8 was used for detection of
the mucin. Lysate of ovarian cancer cell line OVCAR-3 was used as positive control (lane
3). b, mRNA was isolated from PBMCs from women with healthy pregnancy and MUC16
was detected by qPCR. mRNA from OVCAR-3 and ECC-1 cells were used as positive
controls.
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Fig. 2.
Rapid binding of sMUC16 to immune cells via Siglec-9. Jurkat cells transfected with
Siglec-9 were incubated with sMUC16 partially purified from the conditioned media of
OVCAR-3 cells. Binding of the mucin to the Siglec-9 expressing Jurkat cells was
determined by flow cytometry.
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Fig. 3.
sMUC16 predominantly binds to Siglec-9 expressing cells isolated from the peripheral
blood of healthy pregnant women. sMUC16 binding to T cells, B cells, NK cells, and
monocytes from PBMC of healthy pregnant women was determined by flow cytometry.
Siglec-9 positive events were gated and the binding of sMUC16 to these immune cell
subsets was determined. Immune cells from each patient were analyzed by flow cytometry
in duplicates and the data for each reading is shown.
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Fig. 4.
Increasing levels of immune cell bound sMUC16 during pregnancy. Three healthy pregnant
women (HP#1, HP#2, and HP#3) were analyzed for serum CA125 levels (Units/ml shown
below bar graph) and sMUC16 bound to peripheral blood immune cells (bar graph) isolated
at weeks 9 and 18 of pregnancy. Immune cells from these three donors prior to their
pregnancy were also available and were also tested for bound sMUC16. Bar graphs show the
mean fluorescence intensity (MFI) for the total sMUC16 positive events in each sample used
in this analysis.
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Fig. 5.
Healthy pregnant women and preeclampsia patients have comparable levels of serum
CA125 and monocytes. A, Serum samples were drawn from healthy pregnant (n=27) and
preeclampsia patients (n=9) and CA125 levels in each sample were determined using a
clinical assay. b, Healthy pregnant women and preeclampsia patients have comparable levels
of peripheral blood monocytes. Comparable levels of immune cells were present in the
peripheral blood of healthy pregnant women and preeclampsia patients. Representative data
for peripheral blood monocytes is shown here. Data shows the total number of CD3neg/
CD16pos/CD14pos monocyte events as determined by flow cytometry in each blood sample.
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Fig. 6.
Differential binding to sMUC16 to NK cell subsets of preeclaptic patients. Peripheral blood
mononuclear cells isolated from healthy pregnant women and preeclampsia patients at the
time of delivery were subjected to multi-color flow cytometry. The CD16pos/CD56dim and
CD16neg/CD56br NK cell subsets were identified as described in our previous work 11, 12.
sMUC16 was detected using the VK-8 antibody and percentage of sMUC16 and Siglec-9
positive cells were identified. The flow cytometer was calibrated using fluorescent bead
standards allowing us to compare the data obtained from all samples from experiments
conducted on different days. Duplicate readings for each patient are shown.
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Fig. 7.
Differential binding to sMUC16 to monocytes of preeclamptic patients. Peripheral blood
mononuclear cells isolated from healthy pregnant women and preeclampsia patients at the
time of delivery were subjected to multi-color flow cytometry. Monocytes were identified as
described 11, 12 and percent of sMUC16 (detected using VK-8 antibody) and Siglec-9
positive events were identified. The flow cytometer was calibrated using fluorescent bead
standards allowing us to compare the data obtained from all samples from experiments
conducted on different days. Duplicate readings for each patient are shown.
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Table 1

Characteristics Controls (n=17) Preeclamptics (n=9) pValue

Age 33.45 (22-42) 27.4 (19-40) *0.0095

Body Mass Index (BMI) 32.45 (26-47) 37.2 (27-51) 0.0555

Gestational Age at Delivery (GA) 38.75 (37.2-41) 35.89 (28.1-38.3) *0.0009
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1. Introduction
With the advent of high-throughput mass spectrometry (MS), shotgun proteomics has been
employed as a major tool to analyze biological samples and produce thousands of MS or
tandem MS spectra [1–3]. The method of choice for annotating these spectra with sequences
are currently database search engines such as Mascot, SEQUEST, OMSSA and X!Tandem
[4–7]. The algorithms generally score the similarities between the experimental and
theoretical spectra and rank the best match with the highest score as the predicted peptide
spectrum match (PSM). However, the top PSM is not necessarily correct due to the scoring
scheme and quality of a spectrum. Target/decoy search strategy and the resulting false
discovery rate (FDR) calculation is used to assess the confidence of reported PSMs[8].
However, there is a tradeoff between sensitivity and accuracy of peptide or protein
identifications that FDR has to manage [9, 10]. In order to increase sensitivity while
maintain accuracy one can incorporate retention time predictors [11–22] as a post-Mascot
analysis tool to increase confidence for peptide identifications.

The retention time (RT) of a peptide is defined as the elapsed time between the time of
injection and the time of elution of the peak maximum. Previous studies demonstrated that
the retention time of a peptide is the function of various peptide parameters, including amino
acid composition [23], N-terminal or C-terminal residues[14], location of amino acids within
the primary structure [16], peptide length or mass[12], and hydrophobicity [20]. Many
sophisticated models have been constructed to predict retention time and used predicted RT
to improve peptide identification. For example, Krokhin et al. [14] trained a linear model
(SSRC) by linearly correlating RT with a comprehensive hydrophobicity which integrates
residue’s hydrophobicity and structural and positional effects. Strittmatter et al. [21]
proposed an artificial neural network (ANN) peptide RT prediction model by using
positional amino acid information to yield a 16% increase in peptide identification for a
complex sample (human plasma) [16]. Klammer et al.[22] adopted a support vector
regressor dynamically trained for each chromatographic run, with which 50% more positive
peptide identifications were obtained at a false positive rate of 3%. Although a great deal of
effort has been made in this field to improve protein identifications in shotgun proteomics,
there are still some challenging issues to be addressed. The comparison of the previously
published models indicates that the static linear model depends on the chromatographic
condition and thus prediction bias would occur when the model is used for a different
condition. ANN model needs an extremely large dataset (~345000 training examples) [21]
that is often impractical for application. Dynamic SVR model is suitable for relatively small
dataset and avoids the RT variation between different chromatographic runs. However, its
performance is modest compared to the other two models. In addition, the deviation between
predicted and experimental RTs (Δ RT) is favorably used to filter out false positives when
applying the trained RT predictor to real data. However, there are limitations in previous
approaches to determine a suitable Δ RT threshold. With SSRC [24], the Δ RT threshold
was determined by tentatively checking recovery of peptide predictions with varying
arbitrary Δ RT values like ±4, ±2, ±1 min. In [22], optimal Δ RT threshold was selected
from a range of Δ RT values (0–240 min) at which the highest numbers of true positives
were obtained across the largest number of FDR values (in a range of 0.5–10%). These
approaches could lead to under or overestimation of peptide identifications by unsuitable Δ
RT threshold. Hence, it is necessary to develop a state-of-the-art RT predictor which can
increase the sensitivity to maximize the number of predictions while ensure the accuracy of
peptide identifications at the same time.

Given that a dynamic SVR model is more universal and practical for real application, we
developed a SVR based RT predictor (RT-SVR) to be used in conjunction with Mascot
search results obtained from 2D LC-MS/MS experiments. Our proposed RT-SVR model
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was constructed with multiple peptide spectral matches (PSM) which were obtained from
Mascot search results (at FDR~1%) for each run. When applying the trained RT-SVR model
to real data for examining peptide identifications, instead of choosing a Δ RT threshold
arbitrarily or trained with a set of FDR, we introduced a method called q value assessment to
define a dynamic Δ RT threshold that improves the confidence of evaluation for peptide
identifications. By using this statistical method, q value rather than Δ RT is employed as the
cut-off criteria to filter out the false positives. q value metric was first proposed by Storey et
al.[25] to analyze genomic data and later on it was revised and applied to MS-based
proteomics by Kail et al.[26, 27]. The q value can be understood as the minimal FDR at
which a peptide spectra match (PSM) can be accepted. In practice, q value can be associated
with any PSM in a dataset. Since q value is calculated from all PSMs in a dataset, it is
considered as a statistical result for the whole dataset like FDR. Previous studies have shown
that q value is equivalent to FDR estimation and no bias will be introduced toward under or
overestimation [28, 29]. Thus, q value assessment is viewed as a more accurate and reliable
estimation of error rate. In our study, a modified q value was calculated based on target and
decoy PSMs and then was assigned to a peptide prediction. Finally, we can unambiguously
filter out the false positives for a given q value threshold such as 0.01 (Figure 1). By
applying our strategy to proteomic analysis of the natural killer leukemia cell line (NKL),
the trained RT-SVR models for all datasets obtained from sample fractions show high
performance with R value above 0.900. The peptide and protein identifications increase by
up to 89.4% and 83.5% respectively in comparison with Mascot search results (at FDR 1%)
with a q value of 0.01. Our results thus demonstrate the utility of the RT-SVR with q value
assessment as a robust and reliable method for post-Mascot analysis in proteomic
applications.

In addition, we combined RT-SVR and Mascot score screening (Mascot Identity Threshold)
to rescue those peptide identifications missed by RT-SVR. This combined RT-SVR method
yields more peptide and protein identifications.

In order to evaluate the general applicability of our RT-SVR strategy we applied the model
to an independent set of large-scale yeast proteomic data acquired using a Thermo LTQ
mass spectrometer (downloaded from PeptideAtlas (PAe001337) and processed by the
combined RT-SVR). As a comparison, 566 unique proteins were predicted at a q value of
0.01 in contrast with 470 with Mascot (MIH, FDR 1%) and 499 unique proteins reported by
Trans-Proteomic Pipeline (TPP, probability filter 0.010). This result suggests that the RT-
SVR model is independent of instruments used for shotgun proteomics and is generally
applicable to proteomic data analysis acquired on multiple mass spectrometric platforms.

RT-SVR was written in Java. The windows-based graphical user interface can be freely
downloaded from http://pages.cs.wisc.edu/~yadi/bioinfo/rtsvr/rtsvr.html.

2. Materials and methods
2.1. Sample preparation for proteomic analysis

107 NKL cells were harvested and washed three times with ice-cold PBS. Cells were lysed
with 100μl RIPA lysis buffer (Formulation: 50 mM Tris-HCl (pH7.4), 150 mM NaCl, 0.1%
SDS, 1% NP-40) on ice for 20 minutes with 20 seconds of sonication at the beginning.
Cellular debris was removed by centrifugation for 30 min at 16,100 ×g at 4°C. Supernatants
were collected and protein concentrations were measured using a BCA protein assay kit
(Pierce). 50μg of protein was used for acetone precipitation. Acetone (precooled to −80°C)
was added gradually (with intermittent vortexing) to the protein extract to a final
concentration of 80% (v/v). The solution was then incubated at −20 °C for 60 minutes and
centrifuged at 16,100 ×g for 15 minutes. The supernatant was decanted, and the pellet was
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carefully washed twice using cold acetone to ensure the efficient removal of detergent. The
residual acetone was evaporated at ambient temperature. The pellet was dissolved and
denatured with 8M urea in 25 mM ammonium bicarbonate buffer, and reduced by
incubating with 50 mM DTT at 37°C for 1 hour. The reduced proteins were alkylated for 1
hour in darkness with 100 mM iodoacetamide. The alkylation reaction was quenched by
adding DTT to a final concentration of 50 mM. The samples were diluted to a final
concentration of 1 M urea. Trypsin was added to the sample at a 30:1 protein to trypsin mass
ratio. The sample was incubated at 37°C overnight.

2.2. Off-line first dimension HPLC
Tryptic digests were injected onto Waters Alliance HPLC (Waters) with a high pH-stable
RP column (Phenomenex Gemini C18, 150 × 2.1mm, 3 micron) at a flow rate of 150μL/
min. The peptides were eluted with a gradient from 5 to 45% solvent B over 60 minutes
(Solvent A: 100mM ammonium formate, pH 10; Solvent B: acetonitrile (ACN)). Fractions
were collected every 3 min for 60 min. Collected fractions were dried by Speedvac and
reconstituted in 30 μL of 0.1% formic acid. 5 μL of each of the 20 fractions were subjected
to nanoLC-MS/MS.

2.3. LC-ESI ion trap mass spectrometry and MS/MS analysis
20 fractions collected from high pH RPLC were analyzed using amaZon ion trap mass
spectrometer (Bruker Daltonics, Germany) equipped with Eksigent nanoLC-Ultra system
(Dublin, CA). For the chromatographic separation, solvent A consisted of 0.1% formic acid
in water and solvent B consisted of 0.1% formic acid in ACN. 5 μL of each fraction is
injected onto an Agilent Technologies Zorbax 300 SB-C18 5 μm, 5×0.3 mm trap cartridge
(Santa Clara, CA) at a flow rate of 5 μL/min for 5 minutes at 95% A 5% B, followed by
peptides separation performed on Waters 3μm Atlantis dC18 75 μm × 150 mm analytical
column (Milford, MA) using gradient from 0 to 45% solvent B at 250 nL/min over 90
minutes. Acquisition of precursor ions and MS/MS spectra was performed using the
parameters as indicated below:

Smart parameter setting (SPS) was set to 700 m/z, compound stability and trap drive level
were set at 100%. Dry gas temperature, 125°C, dry gas, 4.0 L/min, capillary voltage, −1300
V, end plate offset, −500V, MS/MS fragmentation amplitude, 1.0V, and Smart
Fragmentation set at 30–300%. Data were generated in data dependent mode with strict
active exclusion set after two spectra and released after one minute. MS/MS spectra were
obtained via collision induced dissociation (CID) fragmentation for the six most abundant
MS ions. For MS generation the ICC target was set to 200,000, maximum accumulation
time, 50.00 ms, one spectrometric average, rolling average, 2, acquisition range of 300–1500
m/z, and scan speed (enhanced resolution) of 8,100 m/z s−1. For MS/MS generation the ICC
target was set to 300,000, maximum accumulation time, 50.00 ms, two spectrometric
averages, acquisition range of 100–2000 m/z, and scan speed (Ultrascan) of 32,000 m/z per
second.

2.4. MS/MS database search
MS/MS spectra were converted into mgf formatted files by DataAnalysis (Ver 4.0, Bruker
Daltonics Bremen, Germany). Deviations in parameters from the default Protein Analysis in
DataAnalysis were as follows: intensity threshold, 1000, maximum number of compounds,
1E9, and retention time window 0.001 minute. The resulting mgf files were then searched
against the Human SwissProt database (SwissProt_57.5.fasta) with Mascot 2.2.06. The
parameters and conditions were set as the following: tryptic digestion, maximum 3 missed
cleavages, carbamidomethylation of cysteine as the fixed modification, oxidation of
methionine as the variable modification, peptide mass tolerance of 100 ppm, fragment mass
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tolerance of 0.6 Da, +1, +2 and +3 chosen for charge state. In this study, a simultaneous
target-decoy search strategy (automatic decoy search) was adopted for FDR estimation.
During the search, every time a protein sequence from the target database is tested, a random
sequence of the same length is automatically generated and tested. Set “a bold red peptide
required” for protein assembly.

2.5. Extracting training and test datasets
We used Mascot results obtained at a FDR of 1% as the source of training and test datasets.
The FDR can be calculated as the number of decoy matches divided by the number of target
matches. We accepted the peptide-spectra matches (PSM) above identity threshold as
confident identifications when FDR is equal or less than 1%. By adjusting the significance
level, p value defined by Mascot, the FDR can be controlled at ~1%. Following this, the
resulting peptide identifications were exported as csv formatted files. A custom-written java
script was then used to process the exported results and extract those identifications with
scores above identity threshold. The corresponding retention times were also included.
Finally, the set of peptides and associated retention times were randomly split according to a
ratio of 3:1 to form the training and test datasets for each chromatographic run. No data was
allowed to be included in both training and test datasets to avoid overfitting. The fraction
with 100 or less PSMs at a FDR of 1% was not used for this study because the performance
of a support vector regressor (SVR) would be deteriorated greatly if it was generated by a
small number of training examples [30]. Via mascot search, there is no peptide contained in
the first 1/4 and last 1/4 of the 20 fractions. We used the middle 10 fractions for our study.
After checking the number of peptide predictions in each of 10 fractions, we found that 9
fractions met the criteria (confident PSMs >100) and they were used as the data source for
dataset #1–9. In addition, we selected the last fraction as source for dataset #10 (containing
77 PSMs) to test if the performance of a SVR trained with small size of data could be
deteriorated.

2.6. Constructing dynamic support vector regressor and performance analysis
Given the variations of retention times for a specific analyte with different chromatographic
runs, a dynamic retention time regressor is needed to eliminate this bias for each
chromatographic run [22]. A support vector regressor learns a function that relates a
dependant variable, here retention time, to a set of independent variables (we called
features). To generate the independent features, each data point including peptide and the
associated retention time in training dataset was rewritten as 45-element support vectors.
The 45 elements were treated as features composed of the following: 20 features
representing the total number of each amino acid residue in the peptide sequence; 20 binary
features representing the identity of the N-terminal amino acid residue; 2 binary features
standing for the identity of C-termini (R or K, both 0 if no R/K); one feature for peptide
mass; one feature for peptide length and the class feature for retention time. We used the
same method to rewrite the data points in test dataset.

A 10-fold cross validation was set to optimize the hyper-parameter selection. Two kernel
functions were used: a linear kernel which can report the weight of each feature and a RBF
kernel (Gaussian function) which can produce a more flexible and successful regressor.

The performance of SVR model was evaluated by Pearson’s correlation, which measures the
correlation coefficient, R value between the predicted and experimental retention times. The
R value for two datasets X and Y of length n is given by the following formula,
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Where

The whole procedure, including training and test dataset extracting, model learning and
performance analysis, was repeated 5 times to eliminate the data variance[31].

2.7. Application of RT-SVR model and statistical analysis for peptide predictions
For each of chromatographic run #1 to #9, we adjusted p value to 0.10 when employing
Mascot to do a simultaneous target-decoy search (automatic decoy search). The resulting
Mascot report including target and decoy peptide sequence matches (PSM) was exported
as .csv formatted files. Following by this, experimental retention time for each PSM was
picked up and put in a new column “RT/min” in .csv files. The revised .csv files were then
processed by the corresponding RT-SVR model during which the theoretical RTs were
predicted and RT errors (ΔRT, differences between experimental and theoretical RT’s) were
calculated. The RT error was used to calculate q value which was used to statistically assess
the accuracy of peptide predictions.

The following procedure describes the calculation of q value.

Denote the RT errors (Δ RT) of target PSMs f1, f2, …, fmf and the RT errors of decoy PSMs
d1, d2, …, dmd. For a given Δ RT threshold t, the false discovery rate (FDR) can be
estimated as

E(FP(t)) is the expected value of the number of false positives and E(P(t)) is the expected
value of the number of positives. E(FP(t)) and E(P(t)) can be experimentally determined by
doing a simultaneous target-decoy search. E(FP(t)) is the number of experimentally accepted
decoy PSMs, which is denoted as E(FP(t))=|{di ≤ t;i=1,2,…, md}|. E(P(t)) is the number of
experimentally accepted target PSMs denoted as E(P(t))=|{fi ≤ t,i=1,2…, mf}|. Therefore,
we can rewrite the formula of FDR estimation as

For a given target PSM with a RT error of s, the associated q value is defined as the minimal
FDR value as shown in the following equation:
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To calculate q value for a PSM with a RT error of s, 1) compare all other RT errors to s; 2)
compute FDR by setting the RT error as threshold if a RT error ≥ s. 3) compare all
calculated FDRs and choose the smallest one as the q value for the PSM with a RT error of
s.

Throughout the paper we calculate q values at the PSM level; i.e., the same peptide can be
reported as a target or decoy identification multiple times. Through the definition, we can
consider q value as the minimal FDR at which the PSM can be accepted.

3. Results and Discussion
3.1. Support vector regressor and performance analysis

The information about training and test datasets used for this study is summarized in Table 1
in which the number of confident peptide identifications is listed for each chromatographic
run. The size ratio of training dataset to test data set is randomly within 3:1 to 4:1.

We used Alex Smola and Bernhard Scholkopf’s sequential minimal optimization algorithm
to train a support vector regression model (SMOreg). Two kernel functions were utilized in
this study so that we could compare their performance and then choose the better one for
application to protein identifications. Figure 2 demonstrates the comparison of the
performance of both kernels. The Bland-Altman plots[32] were made with the results from
dataset #1. From the graph, most deviations in retention time (RT error) fall into the region
of 95% confidence limit of bias (mean±2SD). The mean and the region of mean±2SD
(0.07±1.76 min) with Gaussian kernel are smaller than those (0.33+2.60 min) with linear
kernel. Moreover, the R value with Gaussian Kernel is higher than that with linear kernel.
Similar results were obtained for other datasets when comparing Gaussian kernels with
linear kernels. Therefore, we chose Gaussian kernel to train RT-SVR model for each
chromatographic run.

The determination of hyper-parameters is complicated when training a SVR model. Caution
is necessary to choose appropriate hyper-parameters in order to establish a good-
performance model. 10-fold cross validation (CV) strategy was used to help choose the
values of hyper-parameters. The optimal complexity parameter c was chosen from the range
of 1.0 to 10.0 for linear kernel and from 1.0 to 100.0 for Gaussian kernel. The filter types

used for both kernels are standardized training data with a function of . The
exponent p associated with kernel function is set to 1.0 while the γ in Gaussian model is set
to 0.01 because they perform best in all cases by comparing to other values. We used all
default values for other hyper-parameters since they did not yield significantly different
results.

Some models have been published to study the property of retention time such as linear
regressor by Krokhin [14], ANN by Petritis [16] etc. Linear regressor relates the retention
time as the function of hydrophobicity. Although it is simple and ready to be used for small
dataset, it is restricted to specific chromatographic conditions. Moreover, when applied to
peptide identification, the method to choose an arbitrary RT threshold may cause either
more false positives or identification loss. ANN method which employed a very large size of
dataset (345000 unique peptides) for training is impractical when applied to protein profiling
study. As a comparison, we ran Krokhin’s linear model (SSRC)

Cao et al. Page 7

J Proteomics. Author manuscript; available in PMC 2012 December 21.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



(http://hs2.proteome.ca/SSRCalc/SSRCalc32.html, version 3.2) on our training data and
tested the performance. The training dataset was used to calculate relative hydrophobicity
with arbitrary value of 1.0 assigned to the two parameters a and b for each peptide in the
dataset, followed by a plot of experimental retention time versus relative hydrophobicity. In
this manner, the two parameters a and b were trained and used for test datasets to obtain the
predicted retention times for the peptides in test set. Finally, the correlation coefficient R
was calculated from the predicted and experimental retention times. Given that our
chromatographic condition (300 Å with formic acid) is different from the four provided
ones, we tested two conditions (“300Å column with TFA conditions” and “formic acid”)
and found that R values are larger with “formic acid” condition. Therefore, we set these
larger R values as the test results from the SSRC model. The results for comparison are
summarized in Table 2, from which we can see that in most cases, both Gaussian and linear
RT-SVR outperform SSRC and only for run #10 the SSRC has a comparable performance to
RT-SVR. This observation suggests that the RT-SVR model prefers relatively large dataset
while the SSRC model works better on small dataset. In addition, it is worth noting that the
RT-SVR model performance is not proportional to the size of training dataset. It only
depends upon the diversity of dataset. For instance, for Gaussian kernel RT-SVR, R value
(0.926) from dataset #6 (323 training examples) is smaller than that (0.956) from dataset #4
(171 training examples). This indicates that the data in dataset #6 are more diverse. This
property is consistent with Klammer’s observation [22].

We also studied if the RT-SVR model is robust with the size of training dataset. A graph of
R versus the training dataset size was generated based on all 10 datasets, shown in Figure 3.
RT-SVR maintains a stable performance with a standard deviation of 0.032 for Gaussian
kernel and 0.053 for linear kernel, while R value for SSRC changes dramatically with a
standard deviation of 0.099. Based on these observations, a conclusion can be made that the
RT-SVR exhibits a stable performance if the size of training dataset is large enough for
model construction.

3.2. Factors that affect the RT-SVR model performance
When we train the RT-SVR model, several concerns need to be addressed that could affect
the performance of the model. The first concern is whether we can use multiple PSMs rather
than unique peptides as examples in training and test datasets. Previous study [22] suggested
that it is necessary to eliminate the redundancy of examples and only allow unique peptide
sequence to be present in a dataset, which can avoid bias in the regression. However, given
the nature of retention property of a compound on an LC column, we believe that there is a
benefit to consider redundant PSMs. Theoretically, the elution peak of a given compound
follows Gaussian distribution and spans duration from seconds to minutes when eluting with
liquid chromatography. Accordingly, when the downstream mass spectrometer samples the
compound and produces the final TIC (Total Ion Chromatogram), multiple mass spectra
corresponding to the same compound will be acquired. Therefore, all retention times
associated with these mass spectra represent the same peptide and should be all included for
the RT-SVR model construction. Inspired by this chemical property, we choose multiple
PSMs rather than unique peptide to produce training and test datasets. It is worth noting that
this training technique will not lead to overfitting because the 45-element vectors
corresponding to these PSMs are not the same due to different retention times. We took
dataset #1 to compare the performance of RT-SVR models trained with multiple PSMs or
unique peptides. The RT-SVR model trained with our method exhibits a higher R value of
0.964 compared to 0.792 with unique peptide training set (both are with Gaussian kernel).
Using multiple PSMs to train a RT-SVR model represents a closer approximation to
chemical condition of LC-MS based proteomic analysis. Thus, the resulting model has a
superior performance to that trained with unique peptides.
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Another concern is whether the correct rate of protein identifications in the training data
significantly affects the performance of the RT-SVR model. Previous studies manually
checked the original dataset to extract confident peptide identifications. By setting a high
value of significance level, i.e., 10% FDR, a large source dataset was obtained to produce
enough training examples [22, 23]. However, this method may result in less confident
training examples which lead to a bias in regression. One way to address this issue is to use
more confident source data to produce training and test datasets. This can be done by using
Mascot results obtained at a FDR of 1% to form training and test datasets as we adopted in
this study. To prove this, we compiled a set of training and test datasets which were
randomly extracted from the Mascot results obtained at a FDR of 9.6% (run #5), followed
by a RT-SVR with Gaussian kernel being trained and tested. We repeated 5 times and used
the average R value to assess the model performance. Consequently, the RT-SVR model
trained with the large dataset (430 examples) from less confident Mascot results
(FDR=9.6%) produces R value of 0.864, compared to 0.959 produced by its counterpart
(trained with 200 examples at FDR=1%). This comparison indicates that accuracy of
training data is more important to ensure the good performance of a RT-SVR model.

Another major factor to consider is dataset size because the sample space and data diversity
shows significant effect on model performance [30]. To investigate the relationship between
the size of training dataset and model performance, we compiled a series of training datasets
and a fixed test dataset which are randomly extracted from the dataset #1 obtained at a FDR
of 1%. All datasets only contain confident peptide identifications with a Mascot score above
Mascot Identity Threshold. A fixed dataset consisting of 101 peptides was first extracted and
used to test the model performance. The training datasets with different sizes were then
randomly extracted from the remaining part of the source dataset #1. The sizes of training
datasets were designed as 50, 100, 150, 200 and 250. Three replicates of each training
dataset were produced to eliminate random error due to data variation. A RT-SVR model
was constructed by every specific training dataset and then tested with the fixed test dataset.
The resulting R values were grouped by the size of training dataset and averaged
arithmetically. Figure 4 shows the average R values with the associated standard deviations
as error bar versus dataset size. As shown the R values corresponding to 50 and 100 training
sets are 0.640 and 0.822, respectively, whereas all others are larger than 0.900. According to
this observation, we can say that a size of 150 for training set is large enough to produce a
satisfactory model performance (R=0.901±0.013). To strengthen this point, we investigated
the quality of protein predictions. The trained RT-SVR models in previous step were applied
to the application dataset, here the application dataset run #1 (p=0.10 or FDR=7.5%), to
predict proteins with a q value of 0.01. Mascot (MIH) identified 135 proteins from this
dataset at a FDR of 1%, which will be used as a comparison. The results are also shown in
Figure 4, from which we can observe the trend of protein identifications over the size of
training dataset. The model trained with the dataset containing 150 examples predicted 133
proteins, which is comparable to Mascot results. By considering both R value and protein
prediction, we can conclude that a training dataset containing 150 or more peptides is good
enough for RT-SVR model construction and the subsequent protein identification. Our study
conducted on chromatographic run #9 and #10 proved this point. The RT-SVR model
trained with a dataset consisting of 153 examples (dataset #9) yielded an R value of 0.903.
This model enabled prediction of 108 proteins when being applied to dataset #9, in contrast
with 94 identified by Mascot. However, with the RT-SVR model (R value is 0.874) trained
with 57 peptides in chromatographic #10, only 40 proteins were identified in comparison to
44 proteins discovered by Mascot.
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3.3 The contribution from features to retention time
According to previous studies[14], retention time of a peptide is determined by
hydrophobicity of each amino acid residue, retaining property at C- or N-termini, structure
and size of the peptide. Given the complex factors that could impact on retention time, it is
meaningful to evaluate the overall contribution of each feature we used in this study to allow
fine tune of the prediction model. Although we did not employ linear-kernel RT-SVR for
protein identification, this model provides a benefit for the study of the contribution of every
feature to retention time. It is worth noting that “retention contribution” here is different
from the traditionally defined “hydrophobicity”. Figure 5 demonstrates the contributions of
several features including 20 amino acid residues, C-terminal R or K, length and mass of
peptides. N-terminal amino acid residues were not shown because they exhibited similar
contributions to the individual residues. Thus, the retention properties of N-terminal residues
can be represented by those individual amino acid residues. The retention contributions were
extracted from linear-kernel RT-SVR trained with dataset run #1 to #9, respectively. As
shown in top panel, the average retention contributions with associated standard deviations
as error bars are plotted with the features. Hydrophobic residues such as I, L, F and W have
greater positive contributions while hydrophilic ones like K and R provides greater negative
contributions. Although there is minimal contribution from C-terminal R or K, the length
and mass make greater positive contributions. These observations are consistent with the
theoretical prediction: large, more hydrophobic molecules tend to be retained longer as
separated with RPLC. The bottom panel shows individual retention contributions from
features for different chromatographic runs. As expected, although similar trends have been
observed, changes are not consistent across varying chromatographic runs. This observation
suggests that it is necessary to train a specific RT-SVR model for every chromatographic
run.

3.4. Application of RT-SVR to protein identification
For massive proteomic data analysis, Mascot is commonly employed as one of the most
popular database search engines for peptide and protein identifications. Mascot scores the
similarity between the experimental MS/MS spectrum of a precursor and the theoretical MS/
MS spectrum of a database sequence and reports peptide-spectrum matches with the highest
score. Mascot identity threshold (MIT) or homology threshold (MHT) is used as the cut-off
score threshold to filter out low-confidence peptide identifications. The peptide
identifications are reported as confident target or decoy PSMs if their scores exceed a
threshold, and then FDR is estimated as the fraction of the number of false positives
(confident decoy PSMs) in the total number of positives (confident target PSMs). A
customer-defined parameter, called significance level p, can be adjusted to obtain different
FDRs and positive peptide identifications as well. In proteomic studies, a FDR around 1% is
generally accepted as confident identifications. Although this method of FDR estimation is
easy to follow, it may encounter a counterintuitive problem: an identical FDR may lead to
different number of PSMs[27]. This results in unreliable assessment of peptide
identifications using conventional Mascot search strategy. In addition, algorithmic bias on
scoring PSMs may also lead to wrong peptide predictions.

RT-SVR uses retention time as an additional useful feature to reevaluate these peptide
identifications. It will not only re-rank high-confidence PSMs but also rescue low-
confidence PSMs. Instead of using FDR, we adopted a specific q value metric which is
facilitated with retention time deviation to assess statistical significance of peptide
identifications. Although q value estimation is widely used to assess the database search
results, it has never been used in the retention time based machine learning technique such
as the RT-SVR model described in this study. To the best of our knowledge, our work
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represents the first attempt to introduce and implement the concept of q value estimation to
this unique application.

For proteomic studies the RT-SVR model needs to be implemented for the application
dataset (Mascot results) produced from the same chromatographic run that is used for model
construction. To increase data space and accommodate more low-confidence PSMs to be
rescued, the application dataset needs to be obtained from Mascot results at a high FDR (e.g.
FDR ~10%). In this study, we ran a simultaneous target-decoy Mascot database search on all
chromatographic runs (database search criteria are the same except precursor tolerance is 1.2
Da) with a p value of 0.10 (approximately FDR ~10%) to produce all application datasets
(from #1 to #10). We then applied every RT-SVR model to the corresponding dataset from
#1 to #9 (dataset #10 is used as performance comparison only) and generated the retention
time deviation for each PSM in each dataset. q value was then calculated for each target
PSM followed by screening of PSMs at a q value threshold of 0.01. The results are
summarized in Table 3. As expected, the number of PSMs and proteins identified by RT-
SVR are larger than those by Mascot (MIT) for each dataset, which is due to the fact that
some low-confidence PSMs have been recovered by RT-SVR. Figure 6 shows the
comparison of the number of confident PSMs obtained by RT-SVR method and Mascot
identity threshold (MIT), respectively. As seen, the number of predicted PSMs increases by
a range of values from 18.7% (as in dataset #6) to 165% (as in dataset #8), which
corresponds to an increase of 4.3% and 89.4% additional unique peptides, respectively.

The use of q value metric other than FDR resolves the counterintuitive issue. Figure 7 shows
the comparison of q value and FDR for the statistical validation of the same dataset #2.
Dotted lines show the PSMs obtained from MIT and MHT over FDR while the solid line
represents the PSMs over q value. A counterintuitive issue can be seen around ~1% FDR at
which two different numbers of PSMs correspond to the same FDR value. As a comparison,
no ambiguity issue is found for q value assessment. This is because the ambiguity is
resolved mathematically by q value that is defined as the minimal FDR for any specific
PSM. The primary distinction between the FDR and the q value is that the former is a
property of a set of PSMs, whereas the latter is a property of a single PSM. We can therefore
associate a unique q value with every target PSM in our dataset. It is worth noting that q
value is equivalent to FDR because it is a statistical estimate based on the whole dataset
although it is assigned to a single PSM [28, 33].

q value threshold is user-defined and can be adjusted (as p value in Mascot search) to result
in different Δ RT thresholds. The distribution of q value over Δ RT for dataset #2 is plotted
in Figure 8. As we can see, the specified q value of 0.01 defines a Δ RT threshold of ± 0.96
min, which identifies 419 target PSMs as the confident peptide identifications. If we
increase the q value to 0.02, which defines a Δ RT threshold of ±4.8min, 978 PSMs would
be identified. This flexibility of user-defined q value is beneficial when one wants to study
more peptides with slightly higher false positive rate.

The use of q value as the cut-off threshold to assess the confidence of peptide identifications
overcomes the limitations of using a fixed Δ RT threshold as in previous studies [22, 24].
Randomly choosing or training a fixed Δ RT threshold to cut off predicted peptides often
results in more false positives or lose true positives. Here, the specified q value such as 0.01
defines the selection of a dynamic Δ RT threshold for a given dataset. Figure 9 demonstrates
the selection of Δ RT threshold for all 9 application datasets. Datasets #3 and #6 show small
Δ RT thresholds (±0.25 min and ±0.21min respectively), which correspond to a small
number of PSMs identified. In contrast, datasets #1 and #8 have large Δ RT thresholds (±
2.91 min and ±2.53 min respectively), which lead to an increase of the number of peptide
identifications. The different selection of Δ RT thresholds is determined by the performance
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of the corresponding RT-SVR model and the quality of application dataset. Regardless of
the Δ RT threshold, the accuracy of the peptide predictions is only determined by q value.

3.5 Inclusion of mascot identity threshold (MIT) into RT-SVR to increase prediction
coverage

Table 3 shows that approximately 10% peptide identifications obtained by MIT method (at
FDR 1%) fail to be identified by the RT-SVR model. This is in part due to model bias that
considers some valid PSMs as outliers. To address this issue, we incorporated MIT into RT-
SVR to obtain maximal coverage of peptide identifications. As two parallel approaches,
MIT identifies peptides at a FDR of 1% while RT-SVR identifies peptides at a q value of
0.01 following the proposed protocols. Finally, we compile MIT and RT-SVR results
together to produce the final report. By this means, we rescued all missed peptide
identifications. Sample results from dataset #1 are provided in supplementary Table S3.

3.6 General applicability of the RT-SVR to proteomic data acquired on other MS platforms
In order to investigate the general applicability of our approach to shotgun proteomics data
obtained using other MS instruments, we selected datasets acquired on a Thermo LTQ mass
spectrometer due to its widespread use in large-scale proteomics studies. Two duplicate
datasets of Yeast shotgun proteomics raw data were downloaded from PeptideAtlas
(PAe001337). The details about raw data, search parameters and Trans-Proteomic Pipeline
(TPP) results can be seen via
ftp://ftp.peptideatlas.org/pub/PeptideAtlas/Repository/PAe001337. The raw data were
converted into mgf data with MM file conversion tool
(http://www.massmatrix.net/mm-cgi/downloads.py). The resulting mgf data were then
searched with Mascot against SwissProt yeast database. We used the same search
parameters as those shown online. Following the protocols we proposed in this study, for
each dataset, we constructed a RT-SVR model based on Mascot results at FDR~1% and then
applied the model to the larger Mascot searching results at p=0.10. In total, the RT-SVR
resulted in 566 unique protein identifications from two duplicate datasets at a q value of
0.01, while Mascot (MIH) predicted 470 unique proteins at a FDR of 1% and TPP reported
499 unique proteins with a probability filter of 0.010. The proteins identified by RT-SVR
are summarized in supplementary Table S4. Thus, we believe that RT-SVR method can also
offer superior performance for MS-based proteomic analysis using LTQ platform.

4. Conclusions
Retention time, as one of the characteristic properties of a peptide sequence, can be used for
distinguishing the confident peptide identifications from the false positives. Models that are
built to predict retention time often fail to perform as expected if one simply assumes a
linear correlation between RT and other intrinsic properties of a peptide. Support vector
regressor with a Gaussian kernel is superior to others due to nonlinear regression and small
dataset requirements. The peptides in training and test datasets affect the performance of a
SVR model. Correct peptide identifications extracted from Mascot results at a FDR of 1%
are favored. Given that Gaussian distribution regulates peptide separation and MS
acquisition, multiple PSMs rather than unique peptides are chosen to produce training
dataset and a better RT-SVR model can be trained. The size of training dataset also affects
the performance of the RT-SVR model. According to our study, a dataset consisting of 150
confident peptides will lead to a high performance model (R > 0.900). Given the variation of
retention time contributions from the features with chromatographic conditions, a specific
RT-SVR model is needed for each chromatographic run.
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When applying the trained RT-SVR model to a real dataset for peptide or protein
identification, the main issue is how to accurately and effectively assess the confidence of
the predictions. The method of choice in this study is q value estimation. According to our
knowledge, this is the first report on the application of q value assessment to RT prediction.
q value is calculated based on target-decoy search and resolves the counterintuitive issue
caused by traditional FDR method. With q value assessment, peptides can be
unambiguously identified. In this study, by using q value assessment, we have shown that
RT-SVR model substantially outperforms Mascot, in the best case identifying 89.4% more
peptides and 83.5% more proteins than using Mascot identity threshold at a q value of 0.01.
These results suggest that the RT-SVR model with q value assessment has a great potential
as a post-Mascot analysis tool to improve protein identifications in shotgun proteomics. The
software package is written in Java and the windows-based graphical user interface can be
freely downloaded from http://pages.cs.wisc.edu/~yadi/bioinfo/rtsvr/rtsvr.html.
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ABBREVIATIONS

NKL natural killer leukemia cell line

RPLC reversed phase liquid chromatography

MS/MS tandem mass spectrometry

PSM peptide spectrum match

RT retention time

Δ RT deviation between predicted and experimental RT

SVR support vector regressor

FDR false discovery rate

MIT Mascot identity threshold

MHT Mascot homology threshold
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Figure 1.
The workflow of RT-SVR in processing proteomic data. The first step is to construct the
RT-SVR model. Target PSMs (at 1%FDR) are screened (remove those with Mascot score <
Mascot identify threshold) to create training and testing datasets (split with a ratio of 3:1).
The second step is to apply the trained RT-SVR to Mascot results (at p=0.10) so as to filter
out false positive predictions. Both target and decoy PSMs are processed with RT-SVR
following by q value assessment by which confident peptide predictions are selected out at a
given q value.
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Figure 2.
The Bland-Altman plot shows the distribution of RT deviation over the average of the
predicted and experimental RTs. The Pearson’s correlation R value is specified at the top
right. Dataset #1 was used to make graphs. a) Gaussian kernel; b) Linear kernel.
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Figure 3.
The performance and robustness comparison for different RT-SVR models and SSRC linear
regressors.
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Figure 4.
The performance of RT-SVR model as a function of the number of training examples. Data
are obtained from dataset #1. Each data point represents the average value of 3 replicates.

Cao et al. Page 19

J Proteomics. Author manuscript; available in PMC 2012 December 21.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 5.
Retention contributions of some features. Shown are the weights from linear-kernel RT-
SVR corresponding to 20 amino acid residues, C-terminal R or K, length and mass. a)
Average retention contribution (standard deviation shown as error bars); b) Individual
contributions for each dataset.
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Figure 6.
The plots of PSMs versus q value or FDR. The curves of PSMs over FDR (for MIT and
MHT) are counterintuitive around 1% FDR. The plot of PSMs over q value (for RT-SVR)
resolves this issue. Comparison indicates that RT-SVR outperforms MIT and MHT. The
results are obtained from application dataset #2.
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Figure 7.
The comparison of PSMs identified with RT-SVR and MIT at a q value of 0.01.
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Figure 8.
The distribution of q value over RT error (Δ RT). Δ RT threshold depends on q value. Data
obtained from dataset #2.
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Figure 9.
The dynamic Δ RT thresholds for all 9 datasets are determined by a specified q value of
0.01. The number on top of each bar represents the upper bound of Δ RT threshold while the
lower bound not shown has the same value but negative sign.
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Table 1

The dataset used in this study. All data with scores exceeding identity threshold are extracted from Mascot
results obtained at a FDR of 1%.

Run Confident peptides Training Test

1 376 275 101

2 364 271 93

3 306 236 70

4 215 171 44

5 293 207 86

6 410 323 87

7 284 223 61

8 374 298 76

9 206 153 53

10 77 57 20
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Table 2

The performance (R value) of RT-SVR and SSRC linear regressor for each dataset

Data set RT-SVR SSRC*

Gaussian Linear

1 0.964 0.920 0.846

2 0.948 0.896 0.677

3 0.975 0.919 0.857

4 0.956 0.936 0.770

5 0.959 0.938 0.631

6 0.926 0.873 0.641

7 0.972 0.916 0.836

8 0.928 0.882 0.716

9 0.903 0.800 0.650

10 0.874 0.786 0.854

*
SSRC is Sequence Specific Retention Calculator (http://hs2.proteome.ca/SSRCalc/SSRCalcHelp.htm, version 3.2)
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